当前位置: X-MOL 学术Proc. Natl. Acad. Sci. U.S.A. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mechanistic basis of propofol-induced disruption of kinesin processivity [Biophysics and Computational Biology]
Proceedings of the National Academy of Sciences of the United States of America ( IF 11.1 ) Pub Date : 2021-02-02 , DOI: 10.1073/pnas.2023659118
Mandira Dutta 1 , Susan P Gilbert 2, 3 , José N Onuchic 4, 5, 6, 7 , Biman Jana 8
Affiliation  

Propofol is a widely used general anesthetic to induce and maintain anesthesia, and its effects are thought to occur through impact on the ligand-gated channels including the GABAA receptor. Propofol also interacts with a large number of proteins including molecular motors and inhibits kinesin processivity, resulting in significant decrease in the run length for conventional kinesin-1 and kinesin-2. However, the molecular mechanism by which propofol achieves this outcome is not known. The structural transition in the kinesin neck-linker region is crucial for its processivity. In this study, we analyzed the effect of propofol and its fluorine derivative (fropofol) on the transition in the neck-linker region of kinesin. Propofol binds at two crucial surfaces in the leading head: one at the microtubule-binding interface and the other in the neck-linker region. We observed in both the cases the order–disorder transition of the neck-linker was disrupted and kinesin lost its signal for forward movement. In contrast, there was not an effect on the neck-linker transition with propofol binding at the trailing head. Free-energy calculations show that propofol at the microtubule-binding surface significantly reduces the microtubule-binding affinity of the kinesin head. While propofol makes pi–pi stacking and H-bond interactions with the propofol binding cavity, fropofol is unable to make a suitable interaction at this binding surface. Therefore, the binding affinity of fropofol is much lower compared to propofol. Hence, this study provides a mechanism by which propofol disrupts kinesin processivity and identifies transitions in the ATPase stepping cycle likely affected.



中文翻译:

异丙酚诱导的驱动蛋白持续性破坏的机制基础[生物物理学与计算生物学]

异丙酚是一种广泛使用的诱导和维持麻醉的全身麻醉剂,其作用被认为是通过影响包括GABA A在内的配体门控通道而发生受体。异丙酚还与包括分子马达在内的大量蛋白质相互作用,并抑制驱动蛋白的持续合成能力,从而导致常规驱动蛋白1和驱动蛋白2的运行长度显着减少。但是,异丙酚达到此结果的分子机制尚不清楚。驱动蛋白颈连接区中的结构转变对其持续性至关重要。在这项研究中,我们分析了异丙酚及其氟衍生物(ropofofol)对驱动蛋白颈连接区过渡的影响。异丙酚在前导头的两个关键表面上结合:一个在微管结合界面处,另一个在颈部接头区域中。在这两种情况下,我们都观察到颈连接器的有序-无序过渡被破坏,驱动蛋白失去了向前运动的信号。相反,异丙酚在尾端结合,对颈部连接物的转变没有影响。自由能计算表明,在微管结合表面的异丙酚显着降低了驱动蛋白头的微管结合亲和力。尽管丙泊酚与丙泊酚结合腔进行pi-pi堆积和H键相互作用,但氟泊酚无法在该结合表面进行合适的相互作用。因此,与丙泊酚相比,丙泊酚的结合亲和力要低得多。因此,这项研究提供了一种机制,丙泊酚可通过该机制破坏驱动蛋白的持续合成能力,并确定可能受影响的ATPase步进循环的转变。自由能计算表明,在微管结合表面的异丙酚显着降低了驱动蛋白头的微管结合亲和力。尽管丙泊酚与丙泊酚结合腔进行pi-pi堆积和H键相互作用,但氟泊酚无法在该结合表面进行合适的相互作用。因此,与丙泊酚相比,丙泊酚的结合亲和力要低得多。因此,这项研究提供了一种机制,丙泊酚可通过该机制破坏驱动蛋白的持续合成能力,并确定可能受影响的ATPase步进循环的转变。自由能计算表明,在微管结合表面的异丙酚显着降低了驱动蛋白头的微管结合亲和力。尽管丙泊酚与丙泊酚结合腔进行pi-pi堆积和H键相互作用,但氟泊酚无法在该结合表面进行合适的相互作用。因此,与丙泊酚相比,丙泊酚的结合亲和力要低得多。因此,这项研究提供了一种机制,丙泊酚可通过该机制破坏驱动蛋白的持续合成能力,并确定可能受影响的ATPase步进循环的转变。

更新日期:2021-01-26
down
wechat
bug