当前位置: X-MOL 学术Environ. Toxicol. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Passive Sampler Exchange Kinetics in Large and Small Water Volumes Under Mixed Rate Control by Sorbent and Water Boundary Layer
Environmental Toxicology and Chemistry ( IF 4.1 ) Pub Date : 2021-01-25 , DOI: 10.1002/etc.4989
Kees Booij 1
Affiliation  

Exchange kinetics of organic compounds between passive samplers and water can be partly or completely controlled by transport in the sorbent. In such cases diffusion models are needed. A model is discussed that is based on a series of cosines (space) and exponentials (time). The model applies to mixed rate control by sorbent and water boundary layer under conditions of fixed aqueous concentrations (open systems, infinite water volumes, in situ sampling) and fixed amounts (closed systems, finite water volumes, ex situ sampling). Details on the implementation of the model in computational software and spreadsheet programs are discussed, including numerical accuracy. Key parameters are Biot number (ratio of internal/external transfer resistance) and sorbent/water phase ratio. Small Biot numbers are always indicative of rate control by the water boundary layer, but for large Biot numbers this may still be the case over short time scales. Application to environmental monitoring of nonpolar compounds showed that diffusion models are rarely needed for sampling with commonly used single‐phase polymers. For determining sorption coefficients in batch incubations, the model demonstrated a profound effect of sorbent/water phase ratio on time to equilibrium. Application of the model to sampling of polar organic compounds by extraction disks with or without a membrane showed that moderate to major sorbent‐controlled kinetics is likely to occur. This implies that the use of sampling rate models for such samplers needs to be reconsidered. Environ Toxicol Chem 2021;40:1241–1254. © 2021 SETAC

中文翻译:

吸附剂和水边界层混合速率控制下大水量和小水量的被动采样器交换动力学

被动采样器和水之间的有机化合物的交换动力学可以部分或完全通过吸附剂中的传输来控制。在这种情况下,需要扩散模型。讨论了一个基于一系列余弦(空间)和指数(时间)的模型。该模型适用于固定水浓度(开放系统、无限水量、原位采样)和固定量(封闭系统、有限水量、非原位采样)条件下吸附剂和水边界层的混合速率控制。讨论了模型在计算软件和电子表格程序中的实施细节,包括数值精度。关键参数是比奥数(内部/外部转移阻力的比率)和吸附剂/水相比率。小的 Biot 数总是表示水边界层的速率控制,但对于大的 Biot 数,这在短时间内可能仍然是这种情况。非极性化合物环境监测的应用表明,对于常用单相聚合物的采样,很少需要扩散模型。为了确定分批培养中的吸附系数,该模型证明了吸附剂/水相比对平衡时间的深远影响。将该模型应用于通过带或不带膜的萃取盘对极性有机化合物进行采样表明,可能会发生中等至主要吸附剂控制的动力学。这意味着需要重新考虑对此类采样器使用采样率模型。非极性化合物环境监测的应用表明,对于常用单相聚合物的采样,很少需要扩散模型。为了确定分批培养中的吸附系数,该模型证明了吸附剂/水相比对平衡时间的深远影响。将该模型应用于通过带或不带膜的萃取盘对极性有机化合物进行采样表明,可能会发生中等至主要吸附剂控制的动力学。这意味着需要重新考虑对此类采样器使用采样率模型。非极性化合物环境监测的应用表明,对于常用单相聚合物的采样,很少需要扩散模型。为了确定分批培养中的吸附系数,该模型证明了吸附剂/水相比对平衡时间的深远影响。将该模型应用于通过带或不带膜的萃取盘对极性有机化合物进行采样表明,可能会发生中等至主要吸附剂控制的动力学。这意味着需要重新考虑对此类采样器使用采样率模型。该模型证明了吸附剂/水相比对平衡时间的深远影响。将该模型应用于通过带或不带膜的萃取盘对极性有机化合物进行采样表明,可能会发生中等至主要吸附剂控制的动力学。这意味着需要重新考虑对此类采样器使用采样率模型。该模型证明了吸附剂/水相比对平衡时间的深远影响。将该模型应用于通过带或不带膜的萃取盘对极性有机化合物进行采样表明,可能会发生中等至主要吸附剂控制的动力学。这意味着需要重新考虑对此类采样器使用采样率模型。环境毒理学化学2021;40:1241-1254。© 2021 SETAC
更新日期:2021-01-25
down
wechat
bug