当前位置: X-MOL 学术Mater. Sci. Eng. B › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Synthesis and Li-ion diffusion kinetic of Zn2(OH)3VO3 nanosheets with ultra-high electrochemical activity
Materials Science and Engineering: B ( IF 3.6 ) Pub Date : 2021-01-23 , DOI: 10.1016/j.mseb.2021.115062
Cuixia Cheng , Fang Chen , Huiyang Yi , Yinfang Cheng , Guosong Lai

It has been reported that 2-dimension Zn2(OH)3VO3 possesses the higher electrochemical activity. However, its morphology evolution, formation mechanism and electrochemical kinetics remain elusive. In this study, Zn2(OH)3VO3 nanosheets with a thickness of 20 ~ 50 nm were synthesized by a facile one-pot hydrothermal route without any post heat treatment. We reveal the morphology evolution through the reaction time manipulation and formation mechanism in terms of nucleation, crystallization and growth. Lithium storage performances of the obtained nanosheets were investigated, featuring a discharge capacity retention of 863 mAh g−1 after 100 cycles at 0.1 A g−1 and Coulombic efficiency of 99%. The reversible specific capacity reached 477 mAh g−1 even at 10 A g−1, indicating an analyzed diffusion-controlled mechanism. Furthermore, for the first time, the electrochemical kinetics of Zn2(OH)3VO3 nanosheets electrode during the first cycle were studied in detail by in situ Electrochemical impedance technology, which certified that the solid electrolyte interface (SEI) layer experienced the formation, dissolution and reformation process upon cycling. The present work might greatly promote the application of Zn2(OH)3VO3 in Li-ion batteries and other fields.



中文翻译:

具有超高电化学活性的Zn 2(OH)3 VO 3纳米片的合成及锂离子扩散动力学

据报道,二维Zn 2(OH)3 VO 3具有较高的电化学活性。然而,其形态演变,形成机理和电化学动力学仍然难以捉摸。在这项研究中,Zn 2(OH)3 VO 3纳米片的厚度为20〜50 nm是通过一种简单的一锅水热法合成的,无需任何后热处理。通过成核,结晶和生长方面的反应时间操纵和形成机理,我们揭示了形态演化。研究了获得的纳米片的锂存储性能,其在0.1 A g下100次循环后的放电容量保持率达863 mAh g -1-1,库仑效率为99%。的可逆比容量达到477毫安克-1甚至在10 A G -1,指示分析扩散控制机制。此外,首次通过原位电化学阻抗技术详细研究了Zn 2(OH)3 VO 3纳米片电极在第一个循环中的电化学动力学,证明了固体电解质界面(SEI)层已经形成,循环中的溶解和重整过程。目前的工作可能会大大促进Zn 2(OH)3 VO 3的应用 在锂离子电池等领域。

更新日期:2021-01-24
down
wechat
bug