当前位置: X-MOL 学术IEEE Trans. Instrum. Meas. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Integration of Multiple Sensors for Non-Contact Rail Profile Measurement and Inspection
IEEE Transactions on Instrumentation and Measurement ( IF 5.6 ) Pub Date : 2021-01-01 , DOI: 10.1109/tim.2020.3042297
Jiaqi Ye , Edward Stewart , Dingcheng Zhang , Qianyu Chen , Karthik Thangaraj , Clive Roberts

Rail profile measurement is one of the most critical tasks for track quality inspection to ensure the safe operation of track systems. In modern railway systems, laser triangulation sensors have been widely adopted in onboard measuring units to carry out 2-D rail profile measurement due to their robustness and truly noncontact properties. However, existing solutions limit the degrees of freedom of the laser sensor and thus cannot provide full coverage of the rail profile due to the “shadowing effect” of triangulation sensors. Incomplete profiles limit the performance of wear assessment hence more detailed inspections still rely on contact-based tools operated by humans. These processes are time-consuming and incompatible with the ever-shortening maintenance windows available in modern railway systems. Benefiting from the miniaturization of sensing technology and improving processors, multisensing systems combine the strengths of different sensors. This article presents a new solution for a laser-based multisensing system for noncontact rail profile measurement and wear inspection. The addition of an inertial measurement unit (IMU) and a camera module allows portable rail profile measurement without “blind spots.” Optimized iterative closest point (ICP) registration is then applied to generate a complete representation of the rail profile. Experimental results demonstrate that the proposed system can provide accurate and efficient rail profile measurement, and could potentially replace conventional contact-based inspection tools.

中文翻译:

用于非接触式轨道轮廓测量和检查的多个传感器的集成

轨道轮廓测量是轨道质量检测的最关键任务之一,以确保轨道系统的安全运行。在现代铁路系统中,激光三角测量传感器因其坚固性和真正的非接触特性而被广泛用于车载测量单元以进行二维轨道轮廓测量。然而,现有的解决方案限制了激光传感器的自由度,因此由于三角测量传感器的“阴影效应”,无法完全覆盖轨道轮廓。不完整的轮廓限制了磨损评估的性能,因此更详细的检查仍然依赖于人工操作的基于接触的工具。这些过程非常耗时,并且与现代铁路系统中不断缩短的维护窗口不兼容。受益于传感技术的小型化和处理器的改进,多传感系统结合了不同传感器的优势。本文介绍了一种用于非接触式钢轨轮廓测量和磨损检测的基于激光的多传感系统的新解决方案。添加一个惯性测量单元 (IMU) 和一个摄像头模块,可实现无“盲点”的便携式轨道轮廓测量。然后应用优化的迭代最近点 (ICP) 配准来生成轨道轮廓的完整表示。实验结果表明,所提出的系统可以提供准确有效的钢轨轮廓测量,并有可能取代传统的基于接触的检测工具。本文介绍了一种用于非接触式钢轨轮廓测量和磨损检测的基于激光的多传感系统的新解决方案。添加一个惯性测量单元 (IMU) 和一个摄像头模块,可实现无“盲点”的便携式轨道轮廓测量。然后应用优化的迭代最近点 (ICP) 配准来生成轨道轮廓的完整表示。实验结果表明,所提出的系统可以提供准确有效的钢轨轮廓测量,并有可能取代传统的基于接触的检测工具。本文介绍了一种用于非接触式钢轨轮廓测量和磨损检测的基于激光的多传感系统的新解决方案。添加一个惯性测量单元 (IMU) 和一个摄像头模块,可实现无“盲点”的便携式轨道轮廓测量。然后应用优化的迭代最近点 (ICP) 配准来生成轨道轮廓的完整表示。实验结果表明,所提出的系统可以提供准确有效的钢轨轮廓测量,并有可能取代传统的基于接触的检测工具。” 然后应用优化的迭代最近点 (ICP) 配准来生成轨道轮廓的完整表示。实验结果表明,所提出的系统可以提供准确有效的钢轨轮廓测量,并有可能取代传统的基于接触的检测工具。” 然后应用优化的迭代最近点 (ICP) 配准来生成轨道轮廓的完整表示。实验结果表明,所提出的系统可以提供准确有效的钢轨轮廓测量,并有可能取代传统的基于接触的检测工具。
更新日期:2021-01-01
down
wechat
bug