当前位置: X-MOL 学术J. Vac. Sci. Technol. B › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nanofabrication of silicon surfaces for reduced virus adhesion
Journal of Vacuum Science & Technology B ( IF 1.4 ) Pub Date : 2021-01-05 , DOI: 10.1116/6.0000548
Ao Guo 1 , Y. Carol Shieh 2 , Ralu Divan 3 , Rong R. Wang 1
Affiliation  

Nanofabrication is a remarkably effective technique to create desirable nanoscale patterns. In this work, the effect of surface nanofabrication on altering virus adhesion to the substrates was examined. Arrays of nanoholes, 50 nm in diameter, 22 nm deep, and 100 nm in pitch distance, were created on silicon (Si) wafers by electron-beam lithography and reactive ion etching. MS2 coliphage, which is 26 ± 2 nm in diameter and is frequently used as a surrogate for human viruses, was applied to investigate the interaction between the virions and smooth or nanostructured Si surfaces. Scanning electron microscopy and atomic force microscopy along with surface wettability analyses revealed that the nanofabrication had the effect of reducing not only the number of viruses attached but also the strength of virus adhesion. These effects were ascribed to the presence of nanoholes, which were inaccessible to the virions due to the unique surface topographical parameters and the surface chemistry, resulting in the decrease of the overall solid contact area for MS2 attachment. The periodic spacing of the nanoholes also limited the unit landing area for MS2 particles, restricting the formation of MS2 aggregates and leading to the reduced amount of MS2 attachment. We anticipate that smart design of a surface’s chemical composition and nanostructure will offer a feasible solution to improve mitigations for controlling viral adhesion and transmission to and from food contact surfaces.

中文翻译:

硅表面的纳米加工可减少病毒粘附

纳米制造是一种非常有效的技术,可以创建所需的纳米级图案。在这项工作中,研究了表面纳米加工对改变病毒对基质的粘附力的影响。通过电子束光刻和反应离子刻蚀,在硅(Si)晶片上创建了直径为50 nm,深度为22 nm,间距为100 nm的纳米孔阵列。MS2噬菌体直径为26±2 nm,经常用作人类病毒的替代物,用于研究病毒体与光滑或纳米结构的Si表面之间的相互作用。扫描电子显微镜和原子力显微镜以及表面润湿性分析表明,纳米加工不仅可以减少附着的病毒数量,而且可以减少病毒粘附强度。这些影响归因于纳米孔的存在,由于独特的表面形貌参数和表面化学性质,病毒体无法接近纳米孔,从而导致MS2附着的总固体接触面积减少。纳米孔的周期性间隔还限制了MS2颗粒的单位着陆面积,限制了MS2聚集体的形成,并导致减少了MS2附着量。我们预计,表面化学成分和纳米结构的智能设计将为改善缓解措施提供可行的解决方案,以控制病毒与食物接触表面的粘附和传播。导致MS2附着的整体固体接触面积减少。纳米孔的周期性间隔还限制了MS2颗粒的单位着陆面积,限制了MS2聚集体的形成,并导致减少了MS2的附着量。我们预计,表面化学成分和纳米结构的智能设计将为改善缓解措施提供可行的解决方案,以控制病毒与食物接触表面的粘附和传播。导致MS2附着的整体固体接触面积减少。纳米孔的周期性间隔还限制了MS2颗粒的单位着陆面积,限制了MS2聚集体的形成,并导致减少了MS2附着量。我们预计,表面化学成分和纳米结构的智能设计将为改善缓解措施提供可行的解决方案,以控制病毒与食物接触表面的粘附和传播。
更新日期:2021-01-22
down
wechat
bug