当前位置: X-MOL 学术Mol. Biol. Cell › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
PxdA interacts with the DipA phosphatase to regulate endosomal hitchhiking of peroxisomes
Molecular Biology of the Cell ( IF 3.3 ) Pub Date : 2021-01-21 , DOI: 10.1091/mbc.e20-08-0559
John Salogiannis 1, 2 , Jenna R Christensen 1 , Livia D Songster 1, 3 , Adriana Aguilar-Maldonado 1 , Nandini Shukla 4, 5 , Samara L Reck-Peterson 1, 2, 3
Affiliation  

In canonical microtubule-based transport, adaptor proteins link cargos to dynein and kinesin motors. Recently, an alternative mode of transport known as ‘hitchhiking’ was discovered, where cargos achieve motility by hitching a ride on already-motile cargos, rather than attaching to a motor protein. Hitchhiking has been best-studied in two filamentous fungi, Aspergillus nidulans and Ustilago maydis. In U. maydis, ribonucleoprotein complexes, peroxisomes, lipid droplets, and endoplasmic reticulum hitchhike on early endosomes. In A. nidulans, peroxisomes hitchhike using a putative molecular linker, PxdA, which associates with early endosomes. However, whether other organelles use PxdA to hitchhike on early endosomes is unclear, as are the molecular mechanisms that regulate hitchhiking. Here we find that the proper distribution of lipid droplets, mitochondria and pre-autophagosomes do not require PxdA, suggesting that PxdA is a peroxisome-specific molecular linker. We identify two new pxdA alleles, including a point mutation (R2044P) that disrupts PxdA's ability to associate with early endosomes and reduces peroxisome movement. We also identify a novel regulator of peroxisome hitchhiking, the phosphatase DipA. DipA co-localizes with early endosomes and its early endosome-association relies on PxdA. Together, our data suggest that PxdA and the DipA phosphatase are specific regulators of peroxisome hitchhiking on early endosomes.

Movie S1: Lipid droplet movements. Lipid droplet (Erg6/AN7146-mKate) movement in an A. nidulans hypha. Arrows denote processively-moving lipid droplets. Images were acquired by time-lapse epifluorescence microscopy using an inverted spinning-disk microscope (Nikon). Frames were taken every 500 ms for 1 min. Video frame rate is 15 frames/s.Download Original Video (2.9 MB)https://ascb-prod-streaming.literatumonline.com/journals/content/mboc/0/mboc.ahead-of-print/mbc.e20-08-0559/20210119/media/mc-e20-08-0559-s01.,652,642,.mp4.m3u8?b92b4ad1b4f274c70877518515abb28bda92fbabe7b929571bd415190bf44d1790b7324fb90f184f91fab10e395327a1bef9725d0c99a358bbbe69c082a95f9d49957eb2932b2be9a6f328f5ec3ab3a0b9719f37f411dc2f7b0eec5ce45813f7fde5849ca534a36656524265fa85b20b5893154fdb26adebb02ceb88d8c967fb0c6f1c6bdc0e919d12fc44df582a293c90e4fde1745131f5517331ef555246dbfcMovie S2: Lipid droplets movement is distinct from early endosome movement. Early endosome (TagGFP2-RabA) movement, lipid droplet (Erg6/AN7146-mKate) movement, and merged panel (early endosomes - green, lipid droplets - magenta) in an A. nidulans hypha. Arrows denote processively-moving lipid droplet. Images were acquired by time-lapse epifluorescence microscopy using an inverted TIRF microscope (Nikon). Scale bar, 5 μm and time in seconds.Download Original Video (.5 MB)https://ascb-prod-streaming.literatumonline.com/journals/content/mboc/0/mboc.ahead-of-print/mbc.e20-08-0559/20210119/media/mc-e20-08-0559-s02.,768,652,642,.mp4.m3u8?b92b4ad1b4f274c70877518511abb28bed2c6f7421a565d9f7a5b3e3f5a40bc644191f5cacfb3cc9bc55304dc1c46558ab6522739decd45c6dec6a8654b8369cdf994bf5e08d6d62d0c63d92507c394aa0ce04dd46b42424c681351fbf89a36a1c835e2472527d29014b342b93fe7ad45c2dd6b50d8aa97a727be5c4bd47e8325a9422f1472c63683cbdbca22d832c2da3092660c4154b06aab69fca9a47586774a654a2a8Movie S3: PxdAR2044P-expressing hyphae have defects in peroxisome movement. Peroxisome (mCherry-PTS1) movement in an A. nidulans hypha expressing either PxdAWT-GFP or PxdAR2044P-GFP from the endogenous pxdA promoter. Arrows in magenta indicate long-range movement of peroxisomes. Images were acquired by time-lapse epifluorescence microscopy using an inverted TIRF microscope (Nikon). Frames were taken every 500 ms for 45 sec. Video frame rate is 15 frames/s.Download Original Video (1.7 MB)https://ascb-prod-streaming.literatumonline.com/journals/content/mboc/0/mboc.ahead-of-print/mbc.e20-08-0559/20210119/media/mc-e20-08-0559-s03.,652,642,.mp4.m3u8?b92b4ad1b4f274c70877518515abb28bda92fbabe7b929571bd415190bf44d1790b7324fb90f184f91fab10e395327a1bef9725d0c99a358bbbe69c082a95f9d49957eb2932b2be9a6f328f5ec3ab3a0b9719f37f411dc2f7b0eec5ce45813f7fde5849ca534a36656524265fa85b20b5893154fdb26adebb22ceb88d8c967fba0ac9f5b2777f957a082d0e3bed1c9a11c856ae9ede3dc0abcb177dd416e90e5c9Movie S4: PxdAR2044P foci are less motile and more diffuse. PxdA-GFP movement from a PxdAWT-GFP or PxdAR2044P-GFP expressing (endogenous) hypha. Images were acquired by time-lapse epifluorescence microscopy using an inverted TIRF microscope (Nikon). Frames were taken every 367 ms for 20 sec. Video frame rate is 15 frames/s.Download Original Video (.8 MB)https://ascb-prod-streaming.literatumonline.com/journals/content/mboc/0/mboc.ahead-of-print/mbc.e20-08-0559/20210119/media/mc-e20-08-0559-s04.,652,642,.mp4.m3u8?b92b4ad1b4f274c70877518515abb28bda92fbabe7b929571bd415190bf44d1790b7324fb90f184f91fab10e395327a1bef9725d0c99a358bbbe69c082a95f9d49957eb2932b2be9a6f328f5ec3ab3a0b9719f37f411dc2f7b0eec5ce45813f7fde5849ca534a36656524265fa85b20b5893154fdb26adebb52ceb88d8c967fb35fcf569ad02b48c0bef3233b49a2458258209616c811b41e2738d63fff9b0304eMovie S5: DipA localizes to motile foci. DipA movement visualized in a hypha expressing DipA-2xTagGFP2 from the endogenous dipA promoter. Images were acquired by time-lapse epifluorescence microscopy using an inverted spinning-disk microscope (Nikon). Frames were taken every 400 ms for 20 sec. Video frame rate is 15 frames/s.Download Original Video (.8 MB)https://ascb-prod-streaming.literatumonline.com/journals/content/mboc/0/mboc.ahead-of-print/mbc.e20-08-0559/20210119/media/mc-e20-08-0559-s05.,652,642,.mp4.m3u8?b92b4ad1b4f274c70877518515abb28bda92fbabe7b929571bd415190bf44d1790b7324fb90f184f91fab10e395327a1bef9725d0c99a358bbbe69c082a95f9d49957eb2932b2be9a6f328f5ec3ab3a0b9719f37f411dc2f7b0eec5ce45813f7fde5849ca534a36656524265fa85b20b5893154fdb26adebb42ceb88d8c967fbd087325e6509b17e1f4cffed4bab247ba1dc74966059d182cc2a6d70b537cda478Movie S6: PxdA movements are normal in dipAΔ strains. PxdA (GFP-PxdA) movement in a dipA deletion strain. Images were acquired by time-lapse epifluorescence microscopy using an inverted TIRF microscope (Nikon). Frames were taken every 250 ms for 20 sec. Video frame rate is 15 frames/s.Download Original Video (2.9 MB)https://ascb-prod-streaming.literatumonline.com/journals/content/mboc/0/mboc.ahead-of-print/mbc.e20-08-0559/20210119/media/mc-e20-08-0559-s06.,960,900,768,652,642,.mp4.m3u8?b92b4ad1b4f274c70877518417abb28b5655d276a5eae1bfc19592cc1f1a12ac8d96d0769beebf64b7a7aef1609cbd3a33d54a00c50ff29123db1c37b9b21c021889513e583236cdaa7986fef64375cd1a9d5c8e7d6a400cd83e22bfcd0f129e0b4e368457eaeedd5e48d82ab72fec775974cd9c9921fd919f2d0fd8dece14f77f4afd6a543398235b46cf9dee46fc0468e926a92612220dd5fbd830ed9d216c12c4a78e8a468fbd81c9807271Movie S7: PxdA is required for proper localization of DipA. DipA-GFP localization and movement compared in a wild-type and a pxdA deletion strain. Images were acquired by time-lapse epifluorescence microscopy using an inverted spinning-disk microscope (Nikon). Frames were taken every 300 ms for 15 sec. Video frame rate is 15 frames/s.Download Original Video (2.2 MB)https://ascb-prod-streaming.literatumonline.com/journals/content/mboc/0/mboc.ahead-of-print/mbc.e20-08-0559/20210119/media/mc-e20-08-0559-s07.,1200,900,652,642,.mp4.m3u8?b92b4ad1b4f274c70877518414abb28b3a1288f73c3055a5474bbf090edb6c3233559d1b16ff38c592a8e8e15ae303e79c682b0a95bc4fab8cf97b06cfef7c50cf0c1b69293f95cd7f96d691bf77af2af05b2b359cbfc19403762c5aefe5b553f9097e7ec6208f1fb0c7dd7cbcbae97499498e87d793a6bba801204d82060b16bc8dcb8759b11b1b905a7e1ea728e36c5546a09e03736b89baad6021b9b9b18a8426c15f447ba3596b23Movie S8: DipA is required for peroxisome movement. Visualization of peroxisome movement (arrows in magenta) along a wild-type hypha and a hypha from a dipA deletion strain. Images were acquired by time-lapse epifluorescence microscopy using an inverted TIRF microscope (Nikon). Frames were taken every 500 ms for 30 sec. Video frame rate is 15 frames/s.Download Original Video (1.2 MB)https://ascb-prod-streaming.literatumonline.com/journals/content/mboc/0/mboc.ahead-of-print/mbc.e20-08-0559/20210119/media/mc-e20-08-0559-s08.,652,642,.mp4.m3u8?b92b4ad1b4f274c70877518515abb28bda92fbabe7b929571bd415190bf44d1790b7324fb90f184f91fab10e395327a1bef9725d0c99a358bbbe69c082a95f9d49957eb2932b2be9a6f328f5ec3ab3a0b9719f37f411dc2f7b0eec5ce45813f7fde5849ca534a36656524265fa85b20b5893154fdb26adebb92ceb88d8c967fb63a92909c81c147e9a2f295ea5385ee9e9e8c45a9536652a3f532f574024f36910Movie S9: DipA is not required for early endosome movement. Visualization of early endosome movement (TagGFP2-RabA) along a wild-type hypha and a hypha from a dipA deletion strain. Images were acquired by time-lapse epifluorescence microscopy using an inverted TIRF microscope (Nikon). Frames were taken every 250 ms for 13 sec. Video frame rate is 15 frames/s.Download Original Video (1.9 MB)https://ascb-prod-streaming.literatumonline.com/journals/content/mboc/0/mboc.ahead-of-print/mbc.e20-08-0559/20210119/media/mc-e20-08-0559-s09.,652,642,.mp4.m3u8?b92b4ad1b4f274c70877518515abb28bda92fbabe7b929571bd415190bf44d1790b7324fb90f184f91fab10e395327a1bef9725d0c99a358bbbe69c082a95f9d49957eb2932b2be9a6f328f5ec3ab3a0b9719f37f411dc2f7b0eec5ce45813f7fde5849ca534a36656524265fa85b20b5893154fdb26adebb82ceb88d8c967fb512a3cf1071b07fe335a7c4ca3d32a7c3bc9543d78bac4248e9c1627f26632de53Movie S10: DipA cotransports with moving peroxisomes. Simultaneous two-color time-lapse epifluorescence imaging of a hypha with DipA-GFP (green) and peroxisomes (magenta). Images were acquired using the OMX Blaze v4 (GE Healthcare). Frames were taken every 250 ms for 30 sec. Video frame rate is 15 frames/s.Download Original Video (1.3 MB)https://ascb-prod-streaming.literatumonline.com/journals/content/mboc/0/mboc.ahead-of-print/mbc.e20-08-0559/20210119/media/mc-e20-08-0559-s10.,900,652,642,.mp4.m3u8?b92b4ad1b4f274c70877518511abb28bed2c6f7421a565d9f7a5b3e3f5a40bc644191f5cacfb3cc9bc55304dc1c46558ab6522739decd45c6dec6a8654b8369cdf994bf5e08d6d62d0c63d92507c394aa0ce04dd46b42424c681351fbf89a36a1c835e2472527d29014b342b93fe7ad45c2dd6b50d8aa97bd01cb1a49ac7acf8a1c772f74d99a25f7eaa913fea55b6e644a3eb08c2a0e0046295b3e813109eff948c6f758b


中文翻译:

PxdA 与 DipA 磷酸酶相互作用以调节过氧化物酶体的内体搭便车

在典型的基于微管的运输中,衔接蛋白将货物与动力蛋白和驱动蛋白马达连接起来。最近,人们发现了另一种被称为“搭便车”的运输方式,其中货物通过搭便车来实现运动,而不是附着在运动蛋白上。搭便车在两种丝状真菌——构巢曲霉黑粉虱中得到了最好的研究。玉米葡萄球菌中,核糖核蛋白复合物、过氧化物酶体、脂滴和内质网在早期内体上搭便车。在构巢曲霉, 过氧化物酶体使用与早期内体相关的假定分子接头 PxdA 搭便车。然而,其他细胞器是否使用 PxdA 在早期内体上搭便车以及调节搭便车的分子机制尚不清楚。在这里,我们发现脂滴、线粒体和前自噬体的正确分布不需要 PxdA,这表明 PxdA 是一种过氧化物酶体特异性分子接头。我们确定了两个新的pxdA等位基因,包括一个点突变 (R2044P),它破坏了 PxdA 与早期内体结合并减少过氧化物酶体运动的能力。我们还确定了一种新的过氧化物酶体搭便车调节剂,即磷酸酶 DipA。DipA 与早期内体共定位,其早期内体结合依赖于 PxdA。总之,我们的数据表明 PxdA 和 DipA 磷酸酶是过氧化物酶体在早期内体上搭便车的特异性调节剂。

电影 S1:脂滴运动。构巢曲霉菌丝中的脂滴 (Erg6/AN7146-mKate) 运动。箭头表示持续移动的脂滴。使用倒置旋转圆盘显微镜 (Nikon) 通过延时落射荧光显微镜获取图像。每 500 毫秒拍摄一帧,持续 1 分钟。视频帧率为 15 帧/秒。下载原始视频 (2.9 MB)https://ascb-prod-streaming.literatumonline.com/journals/content/mboc/0/mboc.ahead-of-print/mbc.e20-08-0559/20210119/media/mc-e20-08-0559-s01.,652,642,.mp4.m3u8?b92b4ad1b4f274c70877518515abb28bda92fbabe7b929571bd415190bf44d1790b7324fb90f184f91fab10e395327a1bef9725d0c99a358bbbe69c082a95f9d49957eb2932b2be9a6f328f5ec3ab3a0b9719f37f411dc2f7b0eec5ce45813f7fde5849ca534a36656524265fa85b20b5893154fdb26adebb02ceb88d8c967fb0c6f1c6bdc0e919d12fc44df582a293c90e4fde1745131f5517331ef555246dbfc电影 S2:脂滴运动不同于早期内体运动。构巢曲霉菌丝中的早期内体 (TagGFP2-RabA) 运动、脂滴 (Erg6/AN7146-mKate) 运动和合并面板(早期内体 - 绿色、脂滴 - 洋红色)。箭头表示持续移动的脂滴。使用倒置 TIRF 显微镜 (Nikon) 通过延时落射荧光显微镜获取图像。比例尺、5 μm 和以秒为单位的时间。下载原始视频 (.5 MB)https://ascb-prod-streaming.literatumonline.com/journals/content/mboc/0/mboc.ahead-of-print/mbc.e20-08-0559/20210119/media/mc-e20-08-0559-s02.,768,652,642,.mp4.m3u8?b92b4ad1b4f274c70877518511abb28bed2c6f7421a565d9f7a5b3e3f5a40bc644191f5cacfb3cc9bc55304dc1c46558ab6522739decd45c6dec6a8654b8369cdf994bf5e08d6d62d0c63d92507c394aa0ce04dd46b42424c681351fbf89a36a1c835e2472527d29014b342b93fe7ad45c2dd6b50d8aa97a727be5c4bd47e8325a9422f1472c63683cbdbca22d832c2da3092660c4154b06aab69fca9a47586774a654a2a8电影 S3:表达 PxdAR2044P 的菌丝在过氧化物酶体运动中存在缺陷。过氧化物酶体 (mCherry-PTS1) 在构巢曲霉菌丝中的运动,表达来自内源性 pxdA 启动子的 PxdAWT-GFP 或 PxdAR2044P-GFP。洋红色箭头表示过氧化物酶体的长程运动。使用倒置 TIRF 显微镜 (Nikon) 通过延时落射荧光显微镜获取图像。每 500 毫秒拍摄一帧,持续 45 秒。视频帧率为 15 帧/秒。下载原始视频 (1.7 MB)https://ascb-prod-streaming.literatumonline.com/journals/content/mboc/0/mboc.ahead-of-print/mbc.e20-08-0559/20210119/media/mc-e20-08-0559-s03.,652,642,.mp4.m3u8?b92b4ad1b4f274c70877518515abb28bda92fbabe7b929571bd415190bf44d1790b7324fb90f184f91fab10e395327a1bef9725d0c99a358bbbe69c082a95f9d49957eb2932b2be9a6f328f5ec3ab3a0b9719f37f411dc2f7b0eec5ce45813f7fde5849ca534a36656524265fa85b20b5893154fdb26adebb22ceb88d8c967fba0ac9f5b2777f957a082d0e3bed1c9a11c856ae9ede3dc0abcb177dd416e90e5c9电影 S4: PxdAR2044P 病灶的运动性和扩散性较差。从 PxdAWT-GFP 或 PxdAR2044P-GFP 表达(内源性)菌丝的 PxdA-GFP 运动。使用倒置 TIRF 显微镜 (Nikon) 通过延时落射荧光显微镜获取图像。每 367 毫秒拍摄一帧,持续 20 秒。视频帧率为 15 帧/秒。下载原始视频 (.8 MB)https://ascb-prod-streaming.literatumonline.com/journals/content/mboc/0/mboc.ahead-of-print/mbc.e20-08-0559/20210119/media/mc-e20-08-0559-s04.,652,642,.mp4.m3u8?b92b4ad1b4f274c70877518515abb28bda92fbabe7b929571bd415190bf44d1790b7324fb90f184f91fab10e395327a1bef9725d0c99a358bbbe69c082a95f9d49957eb2932b2be9a6f328f5ec3ab3a0b9719f37f411dc2f7b0eec5ce45813f7fde5849ca534a36656524265fa85b20b5893154fdb26adebb52ceb88d8c967fb35fcf569ad02b48c0bef3233b49a2458258209616c811b41e2738d63fff9b0304e电影 S5: DipA 定位到运动灶。DipA 运动在表达来自内源性 dipA 启动子的 DipA-2xTagGFP2 的菌丝中可视化。使用倒置旋转圆盘显微镜 (Nikon) 通过延时落射荧光显微镜获取图像。每 400 毫秒拍摄一帧,持续 20 秒。视频帧率为 15 帧/秒。下载原始视频 (.8 MB)https://ascb-prod-streaming.literatumonline.com/journals/content/mboc/0/mboc.ahead-of-print/mbc.e20-08-0559/20210119/media/mc-e20-08-0559-s05.,652,642,.mp4.m3u8?b92b4ad1b4f274c70877518515abb28bda92fbabe7b929571bd415190bf44d1790b7324fb90f184f91fab10e395327a1bef9725d0c99a358bbbe69c082a95f9d49957eb2932b2be9a6f328f5ec3ab3a0b9719f37f411dc2f7b0eec5ce45813f7fde5849ca534a36656524265fa85b20b5893154fdb26adebb42ceb88d8c967fbd087325e6509b17e1f4cffed4bab247ba1dc74966059d182cc2a6d70b537cda478电影 S6: PxdA 运动在 dipAΔ 菌株中是正常的。dipA 缺失菌株中的 PxdA (GFP-PxdA) 运动。使用倒置 TIRF 显微镜 (Nikon) 通过延时落射荧光显微镜获取图像。每 250 毫秒拍摄一帧,持续 20 秒。视频帧率为 15 帧/秒。下载原始视频 (2.9 MB)https://ascb-prod-streaming.literatumonline.com/journals/content/mboc/0/mboc.ahead-of-print/mbc.e20-08-0559/20210119/media/mc-e20-08-0559-s06.,960,900,768,652,642,.mp4.m3u8?b92b4ad1b4f274c70877518417abb28b5655d276a5eae1bfc19592cc1f1a12ac8d96d0769beebf64b7a7aef1609cbd3a33d54a00c50ff29123db1c37b9b21c021889513e583236cdaa7986fef64375cd1a9d5c8e7d6a400cd83e22bfcd0f129e0b4e368457eaeedd5e48d82ab72fec775974cd9c9921fd919f2d0fd8dece14f77f4afd6a543398235b46cf9dee46fc0468e926a92612220dd5fbd830ed9d216c12c4a78e8a468fbd81c9807271电影 S7:正确定位 DipA 需要 PxdA。在野生型和 pxdA 缺失菌株中比较 DipA-GFP 定位和运动。使用倒置旋转圆盘显微镜 (Nikon) 通过延时落射荧光显微镜获取图像。每 300 毫秒拍摄一帧,持续 15 秒。视频帧率为 15 帧/秒。下载原始视频 (2.2 MB)https://ascb-prod-streaming.literatumonline.com/journals/content/mboc/0/mboc.ahead-of-print/mbc.e20-08-0559/20210119/media/mc-e20-08-0559-s07.,1200,900,652,642,.mp4.m3u8?b92b4ad1b4f274c70877518414abb28b3a1288f73c3055a5474bbf090edb6c3233559d1b16ff38c592a8e8e15ae303e79c682b0a95bc4fab8cf97b06cfef7c50cf0c1b69293f95cd7f96d691bf77af2af05b2b359cbfc19403762c5aefe5b553f9097e7ec6208f1fb0c7dd7cbcbae97499498e87d793a6bba801204d82060b16bc8dcb8759b11b1b905a7e1ea728e36c5546a09e03736b89baad6021b9b9b18a8426c15f447ba3596b23电影 S8:过氧化物酶体运动需要 DipA。沿野生型菌丝和来自 dipA 缺失菌株的菌丝的过氧化物酶体运动(洋红色箭头)的可视化。使用倒置 TIRF 显微镜 (Nikon) 通过延时落射荧光显微镜获取图像。每 500 毫秒拍摄一帧,持续 30 秒。视频帧率为 15 帧/秒。下载原始视频 (1.2 MB)https://ascb-prod-streaming.literatumonline.com/journals/content/mboc/0/mboc.ahead-of-print/mbc.e20-08-0559/20210119/media/mc-e20-08-0559-s08.,652,642,.mp4.m3u8?b92b4ad1b4f274c70877518515abb28bda92fbabe7b929571bd415190bf44d1790b7324fb90f184f91fab10e395327a1bef9725d0c99a358bbbe69c082a95f9d49957eb2932b2be9a6f328f5ec3ab3a0b9719f37f411dc2f7b0eec5ce45813f7fde5849ca534a36656524265fa85b20b5893154fdb26adebb92ceb88d8c967fb63a92909c81c147e9a2f295ea5385ee9e9e8c45a9536652a3f532f574024f36910电影 S9:早期内体运动不需要 DipA。沿野生型菌丝和来自 dipA 缺失菌株的菌丝的早期内体运动 (TagGFP2-RabA) 的可视化。使用倒置 TIRF 显微镜 (Nikon) 通过延时落射荧光显微镜获取图像。每 250 毫秒拍摄一帧,持续 13 秒。视频帧率为 15 帧/秒。下载原始视频 (1.9 MB)https://ascb-prod-streaming.literatumonline.com/journals/content/mboc/0/mboc.ahead-of-print/mbc.e20-08-0559/20210119/media/mc-e20-08-0559-s09.,652,642,.mp4.m3u8?b92b4ad1b4f274c70877518515abb28bda92fbabe7b929571bd415190bf44d1790b7324fb90f184f91fab10e395327a1bef9725d0c99a358bbbe69c082a95f9d49957eb2932b2be9a6f328f5ec3ab3a0b9719f37f411dc2f7b0eec5ce45813f7fde5849ca534a36656524265fa85b20b5893154fdb26adebb82ceb88d8c967fb512a3cf1071b07fe335a7c4ca3d32a7c3bc9543d78bac4248e9c1627f26632de53电影 S10: DipA 与移动过氧化物酶体的协同转运。使用 DipA-GFP(绿色)和过氧化物酶体(洋红色)对菌丝进行同时双色延时落射荧光成像。使用 OMX Blaze v4 (GE Healthcare) 获取图像。每 250 毫秒拍摄一帧,持续 30 秒。视频帧率为 15 帧/秒。下载原始视频 (1.3 MB)https://ascb-prod-streaming.literatumonline.com/journals/content/mboc/0/mboc.ahead-of-print/mbc.e20-08-0559/20210119/media/mc-e20-08-0559-s10.,900,652,642,.mp4.m3u8?b92b4ad1b4f274c70877518511abb28bed2c6f7421a565d9f7a5b3e3f5a40bc644191f5cacfb3cc9bc55304dc1c46558ab6522739decd45c6dec6a8654b8369cdf994bf5e08d6d62d0c63d92507c394aa0ce04dd46b42424c681351fbf89a36a1c835e2472527d29014b342b93fe7ad45c2dd6b50d8aa97bd01cb1a49ac7acf8a1c772f74d99a25f7eaa913fea55b6e644a3eb08c2a0e0046295b3e813109eff948c6f758b
更新日期:2021-01-22
down
wechat
bug