当前位置: X-MOL 学术SIAM J. Discret. Math. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Linear Kernels for Edge Deletion Problems to Immersion-Closed Graph Classes
SIAM Journal on Discrete Mathematics ( IF 0.8 ) Pub Date : 2021-01-21 , DOI: 10.1137/18m1228839
Archontia Giannopoulou , Michał Pilipczuk , Jean-Florent Raymond , Dimitrios M. Thilikos , Marcin Wrochna

SIAM Journal on Discrete Mathematics, Volume 35, Issue 1, Page 105-151, January 2021.
Suppose ${\mathcal{F}}$ is a finite family of graphs. We consider the following meta-problem, called $\mathcal{F}$-Immersion Deletion: given a graph $G$ and integer $k$, decide whether the deletion of at most $k$ edges of $G$ can result in a graph that does not contain any graph from $\mathcal{F}$ as an immersion. This problem is a close relative of the $\mathcal{F}$-Minor Deletion problem studied by Fomin et al. [Proceedings of FOCS, IEEE, 2012, pp. 470--479], where one deletes vertices in order to remove all minor models of graphs from $\mathcal{F}$. We prove that whenever all graphs from $\mathcal{F}$ are connected and at least one graph of $\mathcal{F}$ is planar and subcubic, then the $\mathcal{F}$-Immersion Deletion problem admits a constant-factor approximation algorithm running in time $\mathcal{O}(m^3 \cdot n^3 \cdot \log m)$, a linear kernel that can be computed in time $\mathcal{O}(m^4 \cdot n^3 \cdot \log m)$, and a $\mathcal{O}(2^{\mathcal{O}(k)} + m^4 \cdot n^3 \cdot \log m)$-time fixed-parameter algorithm, where $n,m$ count the vertices and edges of the input graph. These results mirror the findings of Fomin et al., who obtained a similar set of algorithmic results for $\mathcal{F}$-Minor Deletion, under the assumption that at least one graph from $\mathcal{F}$ is planar. An important difference is that we are able to obtain a linear kernel for $\mathcal{F}$-Immersion Deletion, while the exponent of the kernel of Fomin et al. for $\mathcal{F}$-Minor Deletion depends heavily on the family $\mathcal{F}$. In fact, this dependence is unavoidable under plausible complexity assumptions, as proven by Giannopoulou et al. [ACM Trans. Algorithms, 13 (2017), p. 35]. This reveals that the kernelization complexity of $\mathcal{F}$-Immersion Deletion is quite different from that of $\mathcal{F}$-Minor Deletion.


中文翻译:

浸入式封闭图类边缘删除问题的线性核

SIAM 离散数学杂志,第 35 卷,第 1 期,第 105-151 页,2021 年 1 月。
假设 ${\mathcal{F}}$ 是一个有限的图族。我们考虑以下元问题,称为 $\mathcal{F}$-Immersion Deletion:给定一个图 $G$ 和整数 $k$,决定是否删除至多 $k$$G$ 的边可以导致不包含任何来自 $\mathcal{F}$ 的图作为浸入式。这个问题是 Fomin 等人研究的 $\mathcal{F}$-Minor Deletion 问题的近亲。[FOCS 论文集,IEEE,2012,第 470--479 页],其中删除顶点以从 $\mathcal{F}$ 中删除所有次要的图模型。我们证明只要 $\mathcal{F}$ 的所有图都是连通的,并且 $\mathcal{F}$ 的至少一个图是平面和亚立方的,那么 $\mathcal{F}$-Immersion Deletion 问题承认一个常数-因子逼近算法运行时间 $\mathcal{O}(m^3 \cdot n^3 \cdot \log m)$, 一个可以及时计算的线性核 $\mathcal{O}(m^4 \cdot n^3 \cdot \log m)$,和一个 $\mathcal{O}(2^{\mathcal{O}( k)} + m^4 \cdot n^3 \cdot \log m)$-time 固定参数算法,其中 $n,m$ 计算输入图的顶点和边。这些结果反映了 Fomin 等人的发现,他们获得了一组类似的 $\mathcal{F}$-Minor Deletion 算法结果,假设 $\mathcal{F}$ 中至少有一个图是平面的。一个重要的区别是,我们能够获得 $\mathcal{F}$-Immersion Deletion 的线性核,而 Fomin 等人的核指数。对于 $\mathcal{F}$-Minor Deletion 严重依赖于家族 $\mathcal{F}$。事实上,正如 Giannopoulou 等人所证明的那样,在合理的复杂性假设下,这种依赖性是不可避免的。[ACM 翻译。算法, 13 (2017), p. 35]。
更新日期:2021-01-21
down
wechat
bug