当前位置: X-MOL 学术Acta Physiol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Strong ion difference: Inconsistencies lining up
Acta Physiologica ( IF 6.3 ) Pub Date : 2021-01-21 , DOI: 10.1111/apha.13616
Peter Bie 1
Affiliation  

Incongruence between new ideas and current concepts fuels scientific progress. Within acid-base physiology, an—apparently new—idea of a ‘strong ion difference’ in plasma (SID) was introduced by Stewart some 40 years ago.1-3 SID is ‘the sum of all strong base cation concentrations minus the sum of all strong acid anion concentrations’,2 in clinical practice often ([Na+] + [K+] − [Cl]) in mmol/l. Subsequently, the concept was extended to renal function, and recently this was the focus of an editorial in the journal,4 henceforth the editorial. The arguments in the editorial are difficult to follow mainly because (a) they seem to violate the fundamental principle of electroneutrality, (b) they question the mere existence of transmembrane transport of protons and bicarbonate ions and (c) they include peculiar cause-effect relationships for which there are little documentation in the literature. These issues will be discussed below, and—as this is difficult without reference to their background—the ideas of Stewart will be commented. The discussion includes numerical examples taken from a quantitative overview (Figure 1) of essential cause-and-effect relationships representative of a normal person on a typical (H+ generating) Western diet.

image
FIGURE 1
Open in figure viewerPowerPoint
Essential cause-effect relationships of normal acid-base metabolism in steady state under a traditional Western diet. Red box: Ingestion/metabolism of food items yielding energy, carbon dioxide, H+, other waste products and metabolic water, generating CO2 at 15 mol/d and H+ (‘metabolic’ or ‘non-metabolizable’ acid) at 80 mmol/d. All numbers are approximate. Red numbers indicate turnover in millimoles per day. Green text: Elements of buffer base, in plasma primarily consisting of bicarbonate (25 mmol/L) and protein anions (17 mEq/L); haemoglobin is included as blood is the compartment under consideration. Numerically, buffer base is the sum of concentration times electrical charge (in mEq/L) for the individual ions and identical to the ‘strong ion difference’ (SID).9 Blue text: Fluid properties of inflow/outflow to/from renal tubular system. B/A-ratio: Concentration ratio of dominant base/acid elements of phosphate buffer system. TA: Urinary titratable acid. Lung function is here a mechanism by which arterial pCO2 is maintained at 40 mmHg. Non-metabolizable H+ includes (a) strong inorganic acids ingested as such, (b) H+ formed by the metabolism of phospholipids and sulphur-containing proteins and (c) non-metabolizable organic compounds (urate, oxalate, creatinine, etc), providing a H+ input of 80 mmol/d. The equivalent drain of H+ (dashed lines) includes (a) metabolism of organic acids ingested as anions (OA = 20 mmol/d) and metabolised to CO2 and water, (b) urinary excretion as phosphate-mediated titratable acid (TA = 25 mmol/d); most of the filtered phosphates (140 of 180 mmol/d) are reabsorbed; of the 40 mmol/d excreted, 25 mmol/d contribute to TA (pH change from 7.40 to 6.09) and (c) urinary excretion as ammonium ion; the pK of ammonium ion/ammonia is high (pKA ~ 9.2) so that urinary [NH3] is small at all urine pH values. Note that the increase in urinary [H+] over that of glomerular filtrate accounts for excretion of ~0.001% of the daily metabolic source of H+ (770 nmol/d of 60 mmol/d); phosphate buffering accounts for 25 mmol/d (~42%) of H+ excretion, while NH4+ takes care of 35 mmol/d (~58% of H+). Note also, that (normally at rest) several important properties of the extracellular fluid show only small variations; body temperature varies <0.1% (310 ± 0.3 K), body fluid osmolarity (and thereby ionic strength) less than 1% (290 ± 3 mOsm/l); however, en route from arteries to the right atrium, the [H+] in plasma on average increases some 10% (40 → 45 nmol/l, pH 7.40 → 7.35) with sizeable regional differences. A number of quantitatively minor contributors to acid-base balance have been neglected, including (a) the ingestion and metabolic production of phosphoric acid and phosphates maintaining the phosphate buffer system (urinary loss is set to drain the phosphate pool of 40 mmol/d), (b) the urinary excretion of bicarbonate, which usually is negligible on an acid-generating diet, (c) the roles of urate, oxalate, creatinine and other organic acids in the renal [H+] excretion, (d) the intracellular and bone buffer systems which play no role under steady-state conditions and (e) the loss of bicarbonate in faeces (10-20 mmol/d) equivalent to an input of H+ ions of similar magnitude


中文翻译:

强离子差:排列不一致

新思想与当前概念之间的不一致推动了科学进步。在酸碱生理学中,大约 40 年前,Stewart 引入了一种——显然是新的——血浆中“强离子差异”的想法 (SID)。1-3 SID 是“所有强碱阳离子浓度的总和减去所有强酸阴离子浓度的总和”,2在临床实践中经常 ([Na + ] + [K + ] − [Cl ]),单位为 mmol/l . 随后,这个概念被扩展到肾功能,最近这是该杂志社论的焦点,4此后的社论社论中的论点难以理解,主要是因为(a)它们似乎违反了电中性的基本原理,(b)它们质疑质子和碳酸氢根离子跨膜传输的存在和(c)它们包括特殊的因果关系文献中的文献很少。这些问题将在下面讨论,并且——因为如果不参考它们的背景就很难——斯图尔特的想法将被评论。讨论包括从典型(H +生成)西方饮食中代表正常人的基本因果关系的定量概述(图 1)中获取的数值示例。

图片
图1
在图形查看器中打开微软幻灯片软件
传统西方饮食下稳定状态下正常酸碱代谢的基本因果关系。红框:食物的摄取/代谢产生能量、二氧化碳、H +、其他废物和代谢水,产生15 mol/d 的CO 2和80 时的H +(“代谢性”或“非代谢性”酸)毫摩尔/天。所有数字都是近似值。红色数字表示每天的营业额以毫摩尔为单位。绿色文本:缓冲基础元素, 在血浆中主要由碳酸氢盐 (25 mmol/L) 和蛋白质阴离子 (17 mEq/L) 组成;血红蛋白包括在内,因为血液是所考虑的隔室。从数字上讲,缓冲碱是单个离子的浓度乘以电荷(以 mEq/L 为单位)的总和,与“强离子差”(SID) 相同。9蓝色文本:流入/流出肾小管系统的流体特性。B/A 比:磷酸盐缓冲系统的主要碱/酸元素的浓度比。TA:尿可滴定酸。肺功能在这里是一种机制,通过该机制将动脉 pCO 2维持在 40 mmHg。不可代谢的 H +包括 (a) 本身摄入的强无机酸,(b) H +由磷脂和含硫蛋白质和 (c) 不可代谢的有机化合物(尿酸盐、草酸盐、肌酐等)的代谢形成,提供80 mmol/d的 H +输入。H +的等效排放(虚线)包括 (a) 作为阴离子摄入的有机酸的代谢 (OA -  = 20 mmol/d) 并代谢为 CO 2和水,(b) 作为磷酸盐介导的可滴定酸的尿排泄( TA = 25 毫摩尔/天);大多数过滤后的磷酸盐(180 mmol/d 中的 140 个)被重吸收;在排泄的 40 mmol/d 中,25 mmol/d 有助于 TA(pH 从 7.40 变为 6.09)和 (c) 作为铵离子的尿排泄;铵离子/氨的 pK 值很高 (pK A  ~ 9.2),因此尿 [NH 3] 在所有尿液 pH 值下都很小。请注意,尿 [H + ] 相对于肾小球滤液的增加占每日 H +代谢来源的约 0.001% (770 nmol/d 为 60 mmol/d);磷酸盐缓冲占 H +排泄的25 mmol/d(~42%),而 NH 4 +负责 35 mmol/d(H + 的~58% )。另请注意,(通常在静止状态下)细胞外液的几个重要特性仅显示出很小的变化;体温变化 <0.1% (310 ± 0.3 K),体液渗透压(以及离子强度)小于 1% (290 ± 3 mOsm/l);然而,从动脉到右心房的途中,[H +] 在血浆中平均增加约 10%(40 → 45 nmol/l,pH 7.40 → 7.35),具有相当大的区域差异。一些对酸碱平衡的定量影响较小的因素被忽略了,包括 (a) 磷酸和磷酸盐的摄入和代谢产生维持磷酸盐缓冲系统(尿液流失设定为排出 40 mmol/d 的磷酸盐池) , (b) 碳酸氢盐的尿排泄,在产酸饮食中通常可以忽略不计,(c) 尿酸盐、草酸盐、肌酐和其他有机酸在肾脏 [H + ] 排泄中的作用,(d) 细胞内和在稳态条件下不起作用的骨缓冲系统和 (e) 粪便中碳酸氢盐的损失 (10-20 mmol/d) 相当于输入类似数量的 H +离子
更新日期:2021-01-21
down
wechat
bug