当前位置: X-MOL 学术Theor. Biol. Med. Model. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical modeling in arterial hemodynamics incorporating fluid-structure interaction and microcirculation
Theoretical Biology and Medical Modelling ( IF 2.432 ) Pub Date : 2021-01-19 , DOI: 10.1186/s12976-021-00136-z
Fan He , Lu Hua , Tingting Guo

The effects of arterial wall compliance on blood flow have been revealed using fluid-structure interaction in last decades. However, microcirculation is not considered in previous researches. In fact, microcirculation plays a key role in regulating blood flow. Therefore, it is very necessary to involve microcirculation in arterial hemodynamics. The main purpose of the present study is to investigate how wall compliance affects the flow characteristics and to establish the comparisons of these flow variables with rigid wall when microcirculation is considered. We present numerical modeling in arterial hemodynamics incorporating fluid-structure interaction and microcirculation. A novel outlet boundary condition is employed to prescribe microcirculation in an idealised model. The novel finding in this work is that wall compliance under the consideration of microcirculation leads to the increase of wall shear stress in contrast to rigid wall, contrary to the traditional result that wall compliance makes wall shear stress decrease when a constant or time dependent pressure is specified at an outlet. This work provides the valuable study of hemodynamics under physiological and realistic boundary conditions and proves that wall compliance may have a positive impact on wall shear stress based on this model. This methodology in this paper could be used in real model simulations.

中文翻译:

结合流固耦合和微循环的动脉血流动力学数值模拟

在过去的几十年中,利用流体-结构相互作用揭示了动脉壁顺应性对血流的影响。但是,以前的研究没有考虑微循环。实际上,微循环在调节血流中起着关键作用。因此,在动脉血流动力学中涉及微循环是非常必要的。本研究的主要目的是研究壁顺应性如何影响流动特性,并在考虑微循环时建立这些流动变量与刚性壁的比较。我们提出了在动脉血流动力学的数值模型,结合了流体-结构相互作用和微循环。一种新颖的出口边界条件被用来规定理想模型中的微循环。在这项工作中的新颖发现是,与刚性壁相比,在考虑微循环的情况下壁顺应性导致壁切应力的增加,这与传统结果相反,即当压力恒定或随时间变化时,壁顺应性会使壁切应力减小。在出口处指定。这项工作为在生理和现实边界条件下的血液动力学提供了有价值的研究,并证明了基于该模型的壁顺应性可能会对壁切应力产生积极影响。本文中的这种方法可用于真实模型仿真。这项工作为在生理和现实边界条件下的血液动力学提供了有价值的研究,并证明了基于该模型的壁顺应性可能会对壁切应力产生积极影响。本文中的这种方法可用于真实模型仿真。这项工作为在生理和现实边界条件下的血液动力学提供了有价值的研究,并证明了基于该模型的壁顺应性可能会对壁切应力产生积极影响。本文中的这种方法可用于真实模型仿真。
更新日期:2021-01-20
down
wechat
bug