当前位置: X-MOL 学术Biotechnol. Biofuels › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Co-production of acetoin and succinic acid by metabolically engineered Enterobacter cloacae
Biotechnology for Biofuels ( IF 6.3 ) Pub Date : 2021-01-19 , DOI: 10.1186/s13068-021-01878-1
Hsiang-Yen Su , Hua-Ying Li , Cai-Yun Xie , Qiang Fei , Ke-Ke Cheng

Renewable chemicals have attracted attention due to increasing interest in environmental concerns and resource utilization. Biobased production of industrial compounds from nonfood biomass has become increasingly important as a sustainable replacement for traditional petroleum-based production processes depending on fossil resources. Therefore, we engineered an Enterobacter cloacae budC and ldhA double-deletion strain (namely, EC∆budC∆ldhA) to redirect carbon fluxes and optimized the culture conditions to co-produce succinic acid and acetoin. In this work, E. cloacae was metabolically engineered to enhance its combined succinic acid and acetoin production during fermentation. Strain EC∆budC∆ldhA was constructed by deleting 2,3-butanediol dehydrogenase (budC), which is involved in 2,3-butanediol production, and lactate dehydrogenase (ldhA), which is involved in lactic acid production, from the E. cloacae genome. After redirecting and fine-tuning the E. cloacae metabolic flux, succinic acid and acetoin production was enhanced, and the combined production titers of acetoin and succinic acid from glucose were 17.75 and 2.75 g L−1, respectively. Moreover, to further improve acetoin and succinic acid production, glucose and NaHCO3 modes and times of feeding were optimized during fermentation of the EC∆budC∆ldhA strain. The maximum titers of acetoin and succinic acid were 39.5 and 20.3 g L−1 at 72 h, respectively. The engineered strain EC∆budC∆ldhA is useful for the co-production of acetoin and succinic acid and for reducing microbial fermentation costs by combining processes into a single step.

中文翻译:

代谢工程化的阴沟肠杆菌联合生产丙酮酸和琥珀酸

由于人们越来越关注环境问题和资源利用,可再生化学品引起了人们的注意。由非食品生物质进行生物基化合物的生物基生产已变得越来越重要,这是依赖化石资源的传统石油基生产工艺的可持续替代。因此,我们设计了一种阴沟肠杆菌budC和ldhA双缺失菌株(即EC∆budC​​∆ldhA)来重定向碳通量,并优化了培养条件以共同生产琥珀酸和乙酰丁香。在这项工作中,阴沟肠杆菌被代谢工程化,以增强发酵过程中琥珀酸和乙酰丙酮的合成。通过删除涉及2,3-丁二醇生产的2,3-丁二醇脱氢酶(budC)和乳酸脱氢酶(ldhA)来构建EC∆budC​​ΔldhA菌株,从阴沟肠杆菌基因组参与乳酸生产。重定向和微调阴沟肠杆菌的代谢通量后,琥珀酸和丙酮酸的产量得到了提高,并且从葡萄糖中获得的丙酮酸和琥珀酸的总滴定度分别为17.75和2.75 g L-1。此外,为进一步提高乙酰丁二酸和琥珀酸的产量,在EC∆budC​​∆ldhA菌株发酵过程中,优化了葡萄糖和NaHCO3的模式和进料时间。乙酰化和琥珀酸在72 h时的最大滴度分别为39.5和20.3 g L-1。工程菌株EC∆budC​​∆ldhA可用于乙酰丙酮和琥珀酸的联产,并通过将多个步骤组合在一起来降低微生物发酵成本。重定向和微调阴沟肠杆菌的代谢通量后,琥珀酸和丙酮酸的产量得到了提高,并且从葡萄糖中获得的丙酮酸和琥珀酸的总滴定度分别为17.75和2.75 g L-1。此外,为进一步提高乙酰丁二酸和琥珀酸的产量,在EC∆budC​​∆ldhA菌株发酵过程中,优化了葡萄糖和NaHCO3的模式和进料时间。乙醛和琥珀酸在72 h时的最大滴度分别为39.5和20.3 g L-1。工程菌株EC∆budC​​ΔldhA可用于乙酰丙酮和琥珀酸的联产,并通过将多个步骤组合在一起来降低微生物发酵成本。重定向和微调阴沟肠杆菌的代谢通量后,琥珀酸和丙酮酸的产量得到了提高,并且从葡萄糖中获得的丙酮酸和琥珀酸的总滴定度分别为17.75和2.75 g L-1。此外,为进一步提高乙酰丁二酸和琥珀酸的产量,在EC∆budC​​∆ldhA菌株发酵过程中,优化了葡萄糖和NaHCO3的模式和进料时间。乙醛和琥珀酸在72 h时的最大滴度分别为39.5和20.3 g L-1。工程菌株EC∆budC​​ΔldhA可用于乙酰丙酮和琥珀酸的联产,并通过将多个步骤组合在一起来降低微生物发酵成本。从葡萄糖中获得的乙酰丁二酸和琥珀酸的总滴定度分别为17.75和2.75 g L-1。此外,为进一步提高乙酰丁二酸和琥珀酸的产量,在EC∆budC​​∆ldhA菌株发酵过程中,优化了葡萄糖和NaHCO3的模式和进料时间。乙醛和琥珀酸在72 h时的最大滴度分别为39.5和20.3 g L-1。工程菌株EC∆budC​​ΔldhA可用于乙酰丙酮和琥珀酸的联产,并通过将多个步骤组合在一起来降低微生物发酵成本。从葡萄糖中获得的乙酰丁二酸和琥珀酸的总滴定度分别为17.75和2.75 g L-1。此外,为进一步提高乙酰丁二酸和琥珀酸的产量,在EC∆budC​​∆ldhA菌株发酵过程中,优化了葡萄糖和NaHCO3的模式和进料时间。乙酰化和琥珀酸在72 h时的最大滴度分别为39.5和20.3 g L-1。工程菌株EC∆budC​​ΔldhA可用于乙酰丙酮和琥珀酸的联产,并通过将多个步骤组合在一起来降低微生物发酵成本。在72 h分别为3 g L-1。工程菌株EC∆budC​​ΔldhA可用于乙酰丙酮和琥珀酸的联产,并通过将多个步骤组合在一起来降低微生物发酵成本。在72 h分别为3 g L-1。工程菌株EC∆budC​​ΔldhA可用于乙酰丙酮和琥珀酸的联产,并通过将多个步骤组合在一起来降低微生物发酵成本。
更新日期:2021-01-20
down
wechat
bug