当前位置: X-MOL 学术Opt. Express › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Coherent Fourier scatterometry using orbital angular momentum beams for defect detection
Optics Express ( IF 3.8 ) Pub Date : 2021-01-20
Bin Wang, Michael Tanksalvala, Zhe Zhang, Yuka Esashi, Nicholas W. Jenkins, Margaret M. Murnane, Henry C. Kapteyn, and Chen-Ting Liao

Defect inspection on lithographic substrates, masks, reticles, and wafers is an important quality assurance process in semiconductor manufacturing. Coherent Fourier scatterometry (CFS) using laser beams with a Gaussian spatial profile is the standard workhorse routinely used as an in-line inspection tool to achieve high throughput. As the semiconductor industry advances toward shrinking critical dimensions in high volume manufacturing using extreme ultraviolet lithography, new techniques that enable high-sensitivity, high-throughput, and in-line inspection are critically needed. Here we introduce a set of novel defect inspection techniques based on bright-field CFS using coherent beams that carry orbital angular momentum (OAM). One of these techniques, the differential OAM CFS, is particularly unique because it does not rely on referencing to a pre-established database in the case of regularly patterned structures with reflection symmetry. The differential OAM CFS exploits OAM beams with opposite wavefront or phase helicity to provide contrast in the presence of detects. We numerically investigated the performance of these techniques on both amplitude and phase defects and demonstrated their superior advantages—up to an order of magnitude higher in signal-to-noise ratio—over the conventional Gaussian beam CFS. These new techniques will enable increased sensitivity and robustness for in-line nanoscale defect inspection and the concept could also benefit x-ray scattering and scatterometry in general.

中文翻译:

相干傅里叶散射法使用轨道角动量束进行缺陷检测

对光刻基板,掩模,掩模版和晶圆的缺陷检查是半导体制造中重要的质量保证过程。使用具有高斯空间轮廓的激光束的相干傅里叶散射法(CFS)是常规的标准工作马力,通常用作在线检测工具以实现高通量。随着半导体工业朝着使用极限紫外光刻的大批量生产缩小关键尺寸的方向发展,迫切需要能够实现高灵敏度,高通量和在线检查的新技术。在这里,我们介绍了一套基于明场CFS的新颖缺陷检查技术,该技术使用了携带轨道角动量(OAM)的相干光束。这些技术之一是差分OAM CFS,之所以特别独特,是因为在具有反射对称性的规则图案化结构的情况下,它不依赖于参考预先建立的数据库。差分OAM CFS利用具有相反波前或相位螺旋度的OAM光束在检测到的情况下提供对比度。我们通过数值研究了这些技术在幅度和相位缺陷上的性能,并证明了它们比传统高斯光束CFS优越的优势-信噪比高出一个数量级。这些新技术将提高在线纳米级缺陷检测的灵敏度和鲁棒性,并且该概念通常也可以有益于X射线散射和散射法。差分OAM CFS利用具有相反波前或相位螺旋度的OAM光束在检测到的情况下提供对比度。我们通过数值研究了这些技术在幅度和相位缺陷上的性能,并证明了它们比传统高斯光束CFS优越的优势-信噪比高出一个数量级。这些新技术将提高在线纳米级缺陷检测的灵敏度和鲁棒性,并且该概念通常也可以有益于X射线散射和散射法。差分OAM CFS利用具有相反波前或相位螺旋度的OAM光束在检测到的情况下提供对比度。我们通过数值研究了这些技术在幅度和相位缺陷上的性能,并证明了它们比传统高斯光束CFS优越的优势-信噪比高出一个数量级。这些新技术将提高在线纳米级缺陷检测的灵敏度和鲁棒性,并且该概念通常也可以有益于X射线散射和散射法。我们通过数值研究了这些技术在幅度和相位缺陷上的性能,并证明了它们比传统高斯光束CFS优越的优势-信噪比高出一个数量级。这些新技术将提高在线纳米级缺陷检测的灵敏度和鲁棒性,并且该概念通常也可以有益于X射线散射和散射法。我们通过数值研究了这些技术在幅度和相位缺陷上的性能,并证明了它们比传统高斯光束CFS优越的优势-信噪比高出一个数量级。这些新技术将提高在线纳米级缺陷检测的灵敏度和鲁棒性,并且该概念通常还可从X射线散射和散射测量中受益。
更新日期:2021-01-20
down
wechat
bug