当前位置: X-MOL 学术Proc. Natl. Acad. Sci. U.S.A. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nonlinear elasticity and damping govern ultrafast dynamics in click beetles [Applied Physical Sciences]
Proceedings of the National Academy of Sciences of the United States of America ( IF 11.1 ) Pub Date : 2021-02-02 , DOI: 10.1073/pnas.2014569118
Ophelia Bolmin 1 , John J Socha 2 , Marianne Alleyne 3 , Alison C Dunn 4 , Kamel Fezzaa 5 , Aimy A Wissa 1
Affiliation  

Many small animals use springs and latches to overcome the mechanical power output limitations of their muscles. Click beetles use springs and latches to bend their bodies at the thoracic hinge and then unbend extremely quickly, resulting in a clicking motion. When unconstrained, this quick clicking motion results in a jump. While the jumping motion has been studied in depth, the physical mechanisms enabling fast unbending have not. Here, we first identify and quantify the phases of the clicking motion: latching, loading, and energy release. We detail the motion kinematics and investigate the governing dynamics (forces) of the energy release. We use high-speed synchrotron X-ray imaging to observe and analyze the motion of the hinge’s internal structures of four Elater abruptus specimens. We show evidence that soft cuticle in the hinge contributes to the spring mechanism through rapid recoil. Using spectral analysis and nonlinear system identification, we determine the equation of motion and model the beetle as a nonlinear single-degree-of-freedom oscillator. Quadratic damping and snap-through buckling are identified to be the dominant damping and elastic forces, respectively, driving the angular position during the energy release phase. The methods used in this study provide experimental and analytical guidelines for the analysis of extreme motion, starting from motion observation to identifying the forces causing the movement. The tools demonstrated here can be applied to other organisms to enhance our understanding of the energy storage and release strategies small animals use to achieve extreme accelerations repeatedly.



中文翻译:

非线性弹性和阻尼控制click虫的超快动力学[应用物理科学]

许多小型动物使用弹簧和闩锁来克服其肌肉的机械动力输出限制。be虫用弹簧和闩锁在胸部的铰链处弯曲身体,然后非常迅速地弯曲,从而产生,嗒声。不受约束时,此快速单击动作会导致跳跃。尽管对跳动运动进行了深入研究,但尚未实现实现快速弯曲的物理机制。在这里,我们首先确定并量化点击动作的阶段:闩锁,加载和能量释放。我们详细介绍了运动学,并研究了能量释放的控制动力学(力)。我们使用高速同步加速器X射线成像来观察和分析四个Elater突突的铰链内部结构的运动标本。我们显示的证据表明,铰链中的软质表皮通过快速后坐力有助于弹簧机构。使用频谱分析和非线性系统识别,我们确定运动方程,并将甲虫建模为非线性单自由度振荡器。二次阻尼和快速屈曲分别被确定为主要的阻尼力和弹性力,它们在能量释放阶段驱动角位置。本研究中使用的方法为极限运动的分析提供了实验和分析指导,从运动观察到识别引起运动的力。

更新日期:2021-01-20
down
wechat
bug