当前位置: X-MOL 学术Trends Parasitol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Bioengineered 3D Microvessels for Investigating Plasmodium falciparum Pathogenesis
Trends in Parasitology ( IF 9.6 ) Pub Date : 2021-01-20 , DOI: 10.1016/j.pt.2020.12.008
Maria Bernabeu 1 , Caitlin Howard 2 , Ying Zheng 2 , Joseph D Smith 3
Affiliation  

Plasmodium falciparum pathogenesis is complex and intimately connected to vascular physiology. This is exemplified by cerebral malaria (CM), a neurovascular complication that accounts for most of the malaria deaths worldwide. P. falciparum sequestration in the brain microvasculature is a hallmark of CM and is not replicated in animal models. Numerous aspects of the disease are challenging to fully understand from clinical studies, such as parasite binding tropism or causal pathways in blood–brain barrier breakdown. Recent bioengineering approaches allow for the generation of 3D microvessels and organ-specific vasculature that provide precise control of vessel architecture and flow dynamics, and hold great promise for malaria research. Here, we discuss recent and future applications of bioengineered microvessels in malaria pathogenesis research.



中文翻译:

用于研究恶性疟原虫发病机制的生物工程 3D 微血管

恶性疟原虫发病机制复杂且与血管生理密切相关。这以脑疟疾 (CM) 为例,这是一种神经血管并发症,占全球疟疾死亡人数的大部分。恶性疟原虫脑微脉管系统中的隔离是 CM 的标志,在动物模型中没有复制。从临床研究中充分理解该疾病的许多方面具有挑战性,例如寄生虫结合嗜性或血脑屏障破坏中的因果途径。最近的生物工程方法允许生成 3D 微血管和器官特异性脉管系统,提供对血管结构和流动动力学的精确控制,并为疟疾研究带来巨大希望。在这里,我们讨论了生物工程微血管在疟疾发病机制研究中的近期和未来应用。

更新日期:2021-01-20
down
wechat
bug