当前位置: X-MOL 学术Plasm. Sci. tech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An investigation on improving the homogeneity of plasma generated by linear microwave plasma source with a length of 1550 mm
Plasma Science and Technology ( IF 1.7 ) Pub Date : 2021-01-16 , DOI: 10.1088/2058-6272/abd45e
Jicheng ZHOU 1 , Wei XU 1 , Techao CHEN 2
Affiliation  

To develop a larger in-line plasma enhanced chemical vapor deposition (PECVD) device, the length of the linear microwave plasma source needs to be increased to 1550 mm. This paper proposes a solution to the problem of plasma inhomogeneity caused by increasing device length. Based on the COMSOL Multiphysics, a multi-physics field coupling model for in-line PECVD device is developed and validated. The effects of microwave power, chamber pressure, and magnetic flux density on the plasma distribution are investigated, respectively, and their corresponding optimized values are obtained. This paper also presents a new strategy to optimize the wafer position to achieve the balance between deposition rate and film quality. Numerical results have indicated that increasing microwave power and magnetic flux density or decreasing chamber pressure all play positive roles in improving plasma homogeneity, and among them, the microwave power is the most decisive influencing factor. It is found that the plasma homogeneity is optimal under the condition of microwave power at 2000 W, chamber pressure at 15 Pa, and magnetic field strength at 45 mT. The relative deviation is within −3.7% to 3.9%, which fully satisfies the process requirements of the equipment. The best position for the wafer is 88 mm from the copper antenna. The results are very valuable for improving the quality of the in-line PECVD device.



中文翻译:

改善1550 mm长的线性微波等离子体源产生的等离子体的均质性的研究

为了开发更大的在线等离子体增强化学气相沉积(PECVD)设备,线性微波等离子体源的长度需要增加到1550 mm。本文提出了一种解决方案,该问题是由于设备长度增加而引起的等离子体不均匀性。基于COMSOL Multiphysics,开发并验证了在线PECVD设备的多物理场耦合模型。分别研究了微波功率,腔室压力和磁通密度对等离子体分布的影响,并获得了它们各自的最佳值。本文还提出了一种优化晶片位置的新策略,以实现沉积速率和薄膜质量之间的平衡。数值结果表明,增加微波功率和磁通密度或降低腔室压力对改善等离子体均匀性均具有积极作用,其中,微波功率是最决定性的影响因素。发现在2000 W的微波功率,15 Pa的腔室压力和45 mT的磁场强度的条件下,等离子体均匀性最佳。相对偏差在-3.7%至3.9%之内,完全可以满足设备的工艺要求。晶片的最佳位置是距铜天线88毫米。该结果对于提高在线PECVD装置的质量非常有价值。发现在2000 W的微波功率,15 Pa的腔室压力和45 mT的磁场强度的条件下,等离子体均匀性最佳。相对偏差在-3.7%至3.9%之内,完全可以满足设备的工艺要求。晶片的最佳位置是距铜天线88毫米。该结果对于提高在线PECVD装置的质量非常有价值。发现在2000 W的微波功率,15 Pa的腔室压力和45 mT的磁场强度的条件下,等离子体均匀性最佳。相对偏差在-3.7%至3.9%之内,完全可以满足设备的工艺要求。晶片的最佳位置是距铜天线88毫米。该结果对于提高在线PECVD装置的质量非常有价值。

更新日期:2021-01-16
down
wechat
bug