当前位置: X-MOL 学术Ann. Phys. (Berlin) › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Terahertz Polarization Conversion in an Electromagnetically Induced Transparency (EIT)‐Like Metamaterial
Annalen Der Physik ( IF 2.4 ) Pub Date : 2021-01-19 , DOI: 10.1002/andp.202000528
Tian Yang 1 , Xiaoming Liu 2 , Ji Zhou 1
Affiliation  

In this paper, a unique metamaterial (MM) design incorporating both electromagnetically induced transparency (EIT) effect and polarization conversion is proposed. It consists of a cut‐wire as a bright resonator and a side coupled split‐ring resonator (SRR) as a dark resonator, on the one hand, the dark resonator can be excited by the bright resonator via the magnetic near‐field coupling, thereby contributing to a strong cross‐polarization conversion. On the other hand, the destructive interference between the sub‐radiant (dark) SRR and the super‐radiant (bright) cut‐wire results in an EIT effect. Benefiting from the destructive interference between the radiative and dark elements in the EIT MM, radiation loss is greatly suppressed and nearly perfect cross‐polarization conversion with high transmission and low‐loss is realized. In addition, the importance of symmetry is demonstrated by the phenomenon of polarization conversion and EIT effects disappearing when an identical cut‐wire is placed on the other side of the SRR. The proposed MM design provides a new way to address the loss problem in MM polarization devices. More importantly, this design principle of taking advantage of one area to solve the challenges in others may inspire new high‐performance multifunctional MM designs.

中文翻译:

电磁感应透明(EIT)类超材料中的太赫兹极化转换

本文提出了一种独特的超材料(MM)设计,该设计结合了电磁感应透明(EIT)效果和极化转换。它由一根切割线作为一个明亮的谐振器,以及一个侧面耦合的开环谐振器(SRR)作为一个黑暗的谐振器,一方面,黑暗的谐振器可以通过电磁近场耦合被明亮的谐振器激发,从而促进了强大的交叉极化转换。另一方面,亚辐射(暗)SRR和超辐射(亮)割线之间的相消干扰会导致EIT效应。得益于EIT MM中辐射和暗元素之间的破坏性干扰,辐射损失得到了极大的抑制,并实现了近乎完美的交叉极化转换,具有高透射率和低损耗。此外,当在SRR的另一侧放置相同的割线时,偏振转换现象和EIT效应消失就证明了对称的重要性。所提出的MM设计提供了解决MM偏振装置中损耗问题的新方法。更重要的是,这种利用一个领域来解决其他领域挑战的设计原则可能会激发出新的高性能多功能MM设计。
更新日期:2021-03-11
down
wechat
bug