当前位置: X-MOL 学术Met. Mater. Int. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effect of Texture and Microstructure on Tensile Behaviors in the Polycrystalline Pure Niobium
Metals and Materials International ( IF 3.5 ) Pub Date : 2021-01-18 , DOI: 10.1007/s12540-020-00925-0
Shanshan Zhang , Yuancai Liu , Tiewei Xu , Mingxue Sun , Qi Zhang , Yong Wan

Pure polycrystalline niobium had different texture and microstructure due to the RCD-60, RCD-84 and CD-84 fabrication processes and recrystallization at 1000 °C for 2 h. The tensile behaviors and texture evolutions of the niobium were investigated to reveal the correlation of initial texture/microstructure and tensile properties. The crucial differences of microstructure and orientations after recrystallization would influence tensile properties of the niobium. The differences of tensile behaviors during tension testing correspond to the different microstructure and texture evolution in the niobium. The enhanced 〈110〉 // RD texture during the tensile deformation indicates that orientations of sub-structures are arranging along the tensile axis in the RCD-60 niobium. The RCD-84 and CD-84 niobium present the other phenomenon, that sub-structures near the fracture occur a significant rotation and the 〈110〉 // RD texture has been slightly changed after tensile failure. The recrystallized niobium fabricated by the RCD-84 obtains excellent tensile properties with ultimate tensile strength of 364 MPa and elongation of 55%. The strain hardening rate of the CD-84 niobium is the highest during the initial stage of tensile deformation, and becomes lower than that of the RCD-84 niobium after the 16% strain. Furthermore, the analysis of Taylor factors is applied to reveal the difference of hardening rates during tensile deformation due to different fabrication and recrystallization processes of the polycrystalline niobium.



中文翻译:

织构和微观结构对多晶纯铌拉伸行为的影响

由于RCD-60,RCD-84和CD-84的制造过程以及在1000°C下重结晶2 h,纯多晶铌具有不同的织构和微观结构。研究了铌的拉伸行为和织构演变,以揭示初始织构/微观结构与拉伸性能之间的关系。重结晶后微观结构和取向的关键差异将影响铌的拉伸性能。拉伸测试过程中拉伸行为的差异对应于铌的不同微观结构和织构演变。拉伸变形过程中增强的〈110〉 // RD织构表明,RCD-60铌中子结构的取向沿拉伸轴排列。RCD-84和CD-84铌存在另一种现象,断裂附近的子结构发生了明显的旋转,并且<110> // RD织构在拉伸破坏后略有变化。通过RCD-84制备的重结晶铌获得了极好的拉伸性能,极限拉伸强度为364 MPa,伸长率为55%。在拉伸变形的初始阶段,CD-84铌的应变硬化率最高,而在16%应变之后,其应变硬化率低于RCD-84铌。此外,泰勒因子的分析被用于揭示由于多晶铌的不同制造和再结晶过程而在拉伸变形期间硬化速率的差异。通过RCD-84制备的重结晶铌获得了极好的拉伸性能,极限拉伸强度为364 MPa,伸长率为55%。在拉伸变形的初始阶段,CD-84铌的应变硬化率最高,而在16%应变之后,其应变硬化率低于RCD-84铌。此外,泰勒因子的分析被用于揭示由于多晶铌的不同制造和再结晶过程而在拉伸变形期间硬化速率的差异。通过RCD-84制备的重结晶铌获得了极好的拉伸性能,极限拉伸强度为364 MPa,伸长率为55%。在拉伸变形的初始阶段,CD-84铌的应变硬化率最高,而在16%应变之后,其应变硬化率低于RCD-84铌。此外,通过泰勒因子分析揭示了由于多晶铌的不同制造和再结晶过程,在拉伸变形过程中硬化速率的差异。

更新日期:2021-01-19
down
wechat
bug