当前位置: X-MOL 学术J. Mater. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Balancing the strength and ductility of Mg-6Zn-0.2Ca alloy via sub-rapid solidification combined with hard-plate rolling
Journal of Materials Science & Technology ( IF 10.9 ) Pub Date : 2021-01-16 , DOI: 10.1016/j.jmst.2020.11.069
Zhong-Zheng Jin , Min Zha , Hai-long Jia , Pin-Kui Ma , Si-Qing Wang , Jia-Wei Liang , Hui-Yuan Wang

In this study, we successfully prepared a Mg-6Zn-0.2Ca alloy by utilizing sub-rapid solidification (SRS) combined with hard-plate rolling (HPR), whose elongation-to-failure increases from ∼17% to ∼23% without sacrificing tensile strength (∼290 MPa) compared with its counterpart processed via conventional solidification (CS) followed by HPR. Notably, both samples feature a similar refined grain structure with an average grain size of ∼2.1 and ∼2.5 μm, respectively. However, the high cooling rate of ∼150 K/s introduced by SRS modified both the size and morphology of Ca2Mg6Zn3 eutectic phase in comparison to those coarse ones under CS condition. By subsequent HPR, the Ca2Mg6Zn3 phase was further refined and dispersed uniformly by severely fragmentation. Specially, the achieved supersaturation containing excessive Ca solute atoms due to high cooling rate was maintained in the SRS-HPR condition. The mechanisms that govern the high ductility of the SRS-HPR sample could be ascribed to following reasons. First, refined Ca2Mg6Zn3 eutectic phase could effectively alleviate or avoid the crack initiation. Furthermore, excessive Ca solute atoms in α-Mg matrix result in the yield point phenomenon and enhanced strain-hardening ability during tension. The findings proposed a short-processed strategy towards superior performance of Mg-6Zn-0.2Ca alloy for industrial applications.



中文翻译:

亚快速凝固结合硬板轧制来平衡Mg-6Zn-0.2Ca合金的强度和延展性

在这项研究中,我们通过使用亚快速凝固(SRS)结合硬板轧制(HPR)成功地制备了Mg-6Zn-0.2Ca合金,如果没有这种工艺,其延伸率从〜17%增加到〜23%。与通过常规固化(CS)和HPR处理的抗拉强度相比,可降低抗拉强度(〜290 MPa)。值得注意的是,两个样品均具有相似的细化晶粒结构,平均晶粒尺寸分别约为2.1和2.5μm。然而,与CS条件下的粗相相比,SRS引入的约150 K / s的高冷却速率改变了Ca 2 Mg 6 Zn 3共晶相的尺寸和形貌。通过后续的HPR,Ca 2 Mg 6 Zn3相进一步纯化,用严重碎裂均匀分散。特别地,在SRS-HPR条件下,由于高冷却速率而保持的过饱和Ca溶质原子过多。控制SRS-HPR样品高延展性的机理可归因于以下原因。首先,精炼的Ca 2 Mg 6 Zn 3共晶相可以有效地减轻或避免裂纹的产生。此外,α-Mg基体中过多的Ca溶质原子会导致屈服点现象,并在拉伸过程中增强应变硬化能力。这些发现提出了一种针对Mg-6Zn-0.2Ca合金在工业应用中表现出卓越性能的短流程策略。

更新日期:2021-01-18
down
wechat
bug