当前位置: X-MOL 学术J. Energy Storage › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A comprehensive study on the complete charging-discharging cycle of a phase change material using intermediate boiling fluid to control energy flow
Journal of Energy Storage ( IF 9.4 ) Pub Date : 2021-01-16 , DOI: 10.1016/j.est.2021.102235
Hossein Hosseininaveh , Omid Mohammadi , Shahin Faghiri , Mohammad Behshad Shafii

The low melting and solidification rates of phase change materials (PCM), which traces back to their low thermal conductivity coefficient, has led the application of these materials to face limitations. This paper aims to explore the effectiveness of a novel method called intermediate boiling fluid (IBF) in speeding up the energy storage and transfer processes in PCMs during a complete charging-discharging cycle. Throughout this novel technique, paraffin and acetone are utilized as PCM and IBF, respectively. In the solidification process, there is no direct contact between the cold source and the molten paraffin, while acetone, as an intermediate fluid, is being boiled via absorbing paraffin's heat and ultimately causing paraffin to be cooled down and solidified. The melting and solidification experiments were run in a test cell with and without acetone. The experimental results indicate that utilizing this technique dramatically enhances the solidification rate and improves the melting rate to a moderate level. It is illustrated that by using this method under the optimum condition the solidification time, melting time, and the total melting and solidification time decrease by 77 times, 22 percent, and 80 percent, respectively, compared to the conventional method. It is also concluded that by adjusting the container pressure and using different amounts of intermediate boiling fluid (IBF), the freezing and melting rates of phase change materials can be controlled.



中文翻译:

使用中间沸腾流体控制能量流的相变材料的完整充放电循环的综合研究

相变材料(PCM)的低熔化和凝固速率可追溯到其低导热系数,这导致这些材料的应用面临局限性。本文旨在探索一种称为“中间沸腾流体”(IBF)的新方法在整个充放电循环中加速PCM中的能量存储和传递过程的有效性。在整个新技术中,石蜡和丙酮分别用作PCM和IBF。在固化过程中,冷源和熔融石蜡之间没有直接接触,而作为中间流体的丙酮通过吸收石蜡的热量沸腾,最终导致石蜡冷却并固化。熔融和固化实验在有和没有丙酮的测试室中进行。实验结果表明,利用该技术可显着提高凝固速率并将熔化速率提高至中等水平。结果表明,在最佳条件下使用该方法,与传统方法相比,凝固时间,熔化时间和总熔化和凝固时间分别减少了77倍,22%和80%。还得出结论,通过调节容器压力并使用不同量的中间沸腾流体(IBF),可以控制相变材料的冻结和熔化速率。实验结果表明,利用该技术可显着提高凝固速率并将熔化速率提高至中等水平。结果表明,在最佳条件下使用该方法,与传统方法相比,凝固时间,熔化时间和总熔化和凝固时间分别减少了77倍,22%和80%。还得出结论,通过调节容器压力并使用不同量的中间沸腾流体(IBF),可以控制相变材料的冻结和熔化速率。实验结果表明,利用该技术可显着提高凝固速率并将熔化速率提高至中等水平。结果表明,在最佳条件下使用该方法,与传统方法相比,凝固时间,熔化时间和总熔化和凝固时间分别减少了77倍,22%和80%。还得出结论,通过调节容器压力并使用不同量的中间沸腾流体(IBF),可以控制相变材料的冻结和熔化速率。与传统方法相比。还得出结论,通过调节容器压力并使用不同量的中间沸腾流体(IBF),可以控制相变材料的冻结和熔化速率。与传统方法相比。还得出结论,通过调节容器压力并使用不同量的中间沸腾流体(IBF),可以控制相变材料的冻结和熔化速率。

更新日期:2021-01-18
down
wechat
bug