当前位置: X-MOL 学术Mon. Not. R. Astron. Soc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Setting the stage: structures from Gaussian random fields
Monthly Notices of the Royal Astronomical Society ( IF 4.8 ) Pub Date : 2021-01-15 , DOI: 10.1093/mnras/staa3568
Till Sawala 1 , Adrian Jenkins 2 , Stuart McAlpine 1 , Jens Jasche 3 , Guilhem Lavaux 4 , Peter H Johansson 1 , Carlos S Frenk 2
Affiliation  

We study structure formation in a set of cosmological simulations to uncover the scales in the initial density field that gave rise to the formation of present-day structures. Our simulations share a common primordial power spectrum (here Λ cold dark matter, ΛCDM), but the introduction of hierarchical variations of the phase information allows us to systematically study the scales that determine the formation of structure at later times. We consider the variance in z = 0 statistics such as the matter power spectrum and halo mass function. We also define a criterion for the existence of individual haloes across simulations, and determine what scales in the initial density field contain sufficient information for the non-linear formation of unique haloes. We study how the characteristics of individual haloes such as the mass and concentration, as well as the position and velocity, are affected by variations on different scales, and give scaling relations for haloes of different mass. Finally, we use the example of a cluster-mass halo to show how our hierarchical parametrization of the initial density field can be used to create variants of particular objects. With properties such as mass, concentration, kinematics, and substructure of haloes set on distinct and well-determined scales, and its unique ability to introduce variations localized in real space, our method is a powerful tool to study structure formation in cosmological simulations.

中文翻译:

设置阶段:来自高斯随机场的结构

我们在一组宇宙学模拟中研究结构形成,以揭示导致现代结构形成的初始密度场中的尺度。我们的模拟共享一个共同的原始功率谱(此处为 Λ 冷暗物质,ΛCDM),但相位信息的层次变化的引入使我们能够系统地研究决定后期结构形成的尺度。我们考虑 z = 0 统计数据的方差,例如物质功率谱和晕质量函数。我们还为模拟中单个晕的存在定义了一个标准,并确定初始密度场中的哪些尺度包含足够的信息,用于非线性形成独特的晕。我们研究单个光环的特征,例如质量和浓度,以及位置和速度,都受到不同尺度变化的影响,并给出了不同质量晕的尺度关系。最后,我们使用集群质量光环的示例来展示我们的初始密度场的层次参数化如何用于创建特定对象的变体。凭借质量、浓度、运动学和晕圈子结构等属性设置在不同且明确的尺度上,以及其在真实空间中引入局部变化的独特能力,我们的方法是研究宇宙学模拟中结构形成的有力工具。我们使用集群质量光环的示例来展示我们的初始密度场的层次参数化如何用于创建特定对象的变体。凭借质量、浓度、运动学和晕圈子结构等属性设置在不同且明确的尺度上,以及其在真实空间中引入局部变化的独特能力,我们的方法是研究宇宙学模拟中结构形成的有力工具。我们使用集群质量光环的示例来展示我们的初始密度场的层次参数化如何用于创建特定对象的变体。凭借质量、浓度、运动学和晕圈子结构等属性设置在不同且明确的尺度上,以及其在真实空间中引入局部变化的独特能力,我们的方法是研究宇宙学模拟中结构形成的有力工具。
更新日期:2021-01-15
down
wechat
bug