当前位置: X-MOL 学术J. Sens. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Energy-Spectral Efficiency Optimization in Wireless Underground Sensor Networks Using Salp Swarm Algorithm
Journal of Sensors ( IF 1.9 ) Pub Date : 2021-01-15 , DOI: 10.1155/2021/6683988
Mariem Ayedi 1, 2 , Esraa Eldesouky 1, 3 , Jabeen Nazeer 1
Affiliation  

Achieving high data rate transmission is critically constrained by green communication metrics in Wireless Sensor Networks (WSNs). A unified metric ensuring a successful compromise between the energy efficiency (EE) and the spectral efficiency (SE) is, then, an interesting design criterion in such systems. In this paper, we focus on EE-SE tradeoff optimization in Wireless Underground Sensor Networks (WUSNs) where signals penetrate through a challenging lossy soil medium and nodes’ power supply is critical. Underground sensor nodes gather and send sensory information to underground relay nodes which amplify-and-retransmit received signals to an aboveground sink node. We propose to optimize source and relay powers used for each packet transmission using an efficient recent metaheuristic optimization algorithm called Salp Swarm Algorithm (SSA). Thus, the optimal source and relay transmission powers, which maximize the EE-SE tradeoff under the maximum allowed transmission powers and the initial battery capacity constraints, are obtained. Further, we study the case where the underground medium properties are dynamic and change from a transmission to another. For this situation, we propose to allocate different maximum node powers according to the soil medium conditions. Simulation results prove that our proposed optimization achieves a significant EE-SE tradeoff and prolongs the network’s lifetime compared to the fixed allocation node power scheme. Additional gain is obtained in case of dynamic medium conditions.

中文翻译:

基于Salp Swarm算法的无线地下传感器网络能量谱效率优化

无线传感器网络(WSN)中的绿色通信指标严重限制了实现高数据速率传输。因此,确保能效(EE)和频谱效率(SE)成功折衷的统一度量标准是此类系统中令人感兴趣的设计准则。在本文中,我们专注于无线地下传感器网络(WUSN)中的EE-SE折衷优化,其中信号穿过具有挑战性的有损耗的土壤介质,节点的电源至关重要。地下传感器节点收集传感信息并将其发送到地下中继节点,这些中继节点将接收到的信号放大并重新传输到地面接收节点。我们建议使用一种称为Salp Swarm算法(SSA)的高效的最新元启发式优化算法来优化用于每个数据包传输的源和中继功率。从而,获得了最佳的源和中继发射功率,该功率在最大允许发射功率和初始电池容量约束下最大化了EE-SE权衡。此外,我们研究了地下介质特性是动态的并且从一种传输方式变为另一种传输方式的情况。针对这种情况,我们建议根据土壤介质条件分配不同的最大节点功率。仿真结果证明,与固定分配节点电源方案相比,我们提出的优化方案实现了重大的EE-SE折衷,并延长了网络的寿命。在动态介质条件下可以获得额外的增益。获得。此外,我们研究了地下介质特性是动态的并且从一种传输方式变为另一种传输方式的情况。针对这种情况,我们建议根据土壤介质条件分配不同的最大节点功率。仿真结果证明,与固定分配节点电源方案相比,我们提出的优化方案实现了重大的EE-SE折衷,并延长了网络的寿命。在动态介质条件下可以获得额外的增益。获得。此外,我们研究了地下介质特性是动态的并且从一种传输方式变为另一种传输方式的情况。针对这种情况,我们建议根据土壤介质条件分配不同的最大节点功率。仿真结果证明,与固定分配节点电源方案相比,我们提出的优化方案实现了重大的EE-SE折衷,并延长了网络的寿命。在动态介质条件下可以获得额外的增益。仿真结果证明,与固定分配节点电源方案相比,我们提出的优化方案实现了重大的EE-SE折衷,并延长了网络的寿命。在动态介质条件下可以获得额外的增益。仿真结果证明,与固定分配节点电源方案相比,我们提出的优化方案实现了重大的EE-SE折衷,并延长了网络的寿命。在动态介质条件下可以获得额外的增益。
更新日期:2021-01-15
down
wechat
bug