当前位置: X-MOL 学术Mon. Not. R. Astron. Soc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Spectral and polarization properties of black hole accretion disc emission: including absorption effects
Monthly Notices of the Royal Astronomical Society ( IF 4.8 ) Pub Date : 2020-12-16 , DOI: 10.1093/mnras/staa3859
R Taverna 1 , L Marra 1 , S Bianchi 1 , M Dovčiak 2 , R Goosmann 3 , F Marin 3 , G Matt 1 , W Zhang 2
Affiliation  

The study of radiation emitted from black hole accretion discs represents a crucial way to understand the main physical properties of these sources, and in particular the black hole spin. Beside spectral analysis, polarimetry is becoming more and more important, motivated by the development of new techniques which will soon allow to perform measurements also in the X- and {\gamma}-rays. Photons emitted from black hole accretion discs in the soft state are indeed expected to be polarized, with an energy dependence which can provide an estimate of the black hole spin. Calculations performed so far, however, considered scattering as the only process to determine the polarization state of the emitted radiation, implicitly assuming that the temperatures involved are such that material in the disc is entirely ionized. In this work we generalize the problem by calculating the ionization structure of a surface layer of the disc with the public code CLOUDY , and then by determining the polarization properties of the emerging radiation using the Monte Carlo code STOKES . This allows us to account for absorption effects alongside scattering ones. We show that including absorption can deeply modify the polarization properties of the emerging radiation with respect to what is obtained in the pure-scattering limit. As a general rule, we find that the polarization degree is larger when absorption is more important, which occurs e.g. for low accretion rates and/or spins when the ionization of the matter in the innermost accretion disc regions is far from complete.

中文翻译:

黑洞吸积盘发射的光谱和偏振特性:包括吸收效应

对黑洞吸积盘发出的辐射的研究代表了了解这些来源的主要物理特性,尤其是黑洞自旋的关键方法。除了光谱分析之外,偏振测定法变得越来越重要,受到新技术发展的推动,这些新技术很快将允许在 X 射线和 {\gamma} 射线中进行测量。从软状态的黑洞吸积盘发射的光子确实预计会被极化,其能量依赖性可以提供对黑洞自旋的估计。然而,迄今为止进行的计算认为散射是确定发射辐射偏振态的唯一过程,隐含地假设所涉及的温度使得圆盘中的材料完全电离。在这项工作中,我们通过使用公共代码 CLOUDY 计算光盘表面层的电离结构,然后使用蒙特卡罗代码 STOKES 确定出现的辐射的极化特性来概括问题。这使我们能够在考虑散射效应的同时考虑吸收效应。我们表明,相对于在纯散射极限中获得的内容,包括吸收可以深度修改出现的辐射的偏振特性。作为一般规则,我们发现当吸收更重要时极化程度更大,这发生在低吸积率和/或自旋时,当最内层吸积盘区域中的物质电离远未完成时。然后通过使用蒙特卡罗代码 STOKES 确定出现的辐射的偏振特性。这使我们能够在考虑散射效应的同时考虑吸收效应。我们表明,相对于在纯散射极限中获得的内容,包括吸收可以深度修改出现的辐射的偏振特性。作为一般规则,我们发现当吸收更重要时极化程度更大,这发生在低吸积率和/或自旋时,当最内层吸积盘区域中的物质电离远未完成时。然后通过使用蒙特卡罗代码 STOKES 确定出现的辐射的偏振特性。这使我们能够在考虑散射效应的同时考虑吸收效应。我们表明,相对于在纯散射极限中获得的内容,包括吸收可以深度修改出现的辐射的偏振特性。作为一般规则,我们发现当吸收更重要时极化程度更大,这发生在低吸积率和/或自旋时,当最内层吸积盘区域中的物质电离远未完成时。我们表明,相对于在纯散射极限中获得的内容,包括吸收可以深度修改出现的辐射的偏振特性。作为一般规则,我们发现当吸收更重要时极化程度更大,这发生在低吸积率和/或自旋时,当最内层吸积盘区域中的物质电离远未完成时。我们表明,相对于在纯散射极限中获得的内容,包括吸收可以深度修改出现的辐射的偏振特性。作为一般规则,我们发现当吸收更重要时极化程度更大,这发生在低吸积率和/或自旋时,当最内层吸积盘区域中的物质电离远未完成时。
更新日期:2020-12-16
down
wechat
bug