当前位置: X-MOL 学术Struct. Des. Tall Spec. Build. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Life‐cycle cost optimization of wind‐excited tall buildings using surrogate models
The Structural Design of Tall and Special Buildings ( IF 2.4 ) Pub Date : 2021-01-15 , DOI: 10.1002/tal.1840
Laura Micheli 1 , Alice Alipour 2 , Simon Laflamme 2
Affiliation  

As buildings become taller and slender, they become more sensitive to wind‐induced vibrations. Commonly used solutions to mitigate wind‐induced vibrations are structural system modifications and integration of supplemental damping devices. This paper presents a procedure to optimize the structural system and the damping device configuration with the goal of reducing wind‐induced vibrations. The performance of the building is expressed in terms of life‐cycle cost (LCC), allowing to consider not only the initial costs associated with the integration of wind‐induced vibration mitigation system but also the lifetime savings due to vibration suppression. The proposed procedure employs a set of Kriging surrogate models to analyze a large number of different structural properties/damping device characteristics. The combination that minimizes the LCC is taken as the optimal configuration. The procedure is demonstrated on a wind‐sensitive 39‐story building equipped with passive dampers. Results demonstrated that the accuracy of the Kriging surrogate models depends on the number of input variables considered, with an average root mean square error of 2.5% for the floors without dampers and 5% for the floors equipped with damping devices, respectively. It was also demonstrated that optimal stiffness–damping device configuration and LCC depend on the assumed cost of the structural system modifications.

中文翻译:

使用代理模型优化受风激励高层建筑的生命周期成本

随着建筑物变得越来越高和纤细,它们对风引起的振动变得越来越敏感。减轻风引起的振动的常用解决方案是结构系统的修改和辅助阻尼装置的集成。本文提出了一种优化结构系统和阻尼装置配置的程序,目的是减少风振。建筑物的性能以生命周期成本(LCC)表示,不仅可以考虑与风振减振系统集成相关的初始成本,还可以考虑由于抑制振动而节省的使用寿命。拟议的程序采用了一组Kriging替代模型来分析大量不同的结构特性/阻尼装置特性。最小化LCC的组合被视为最佳配置。该程序在配备有被动风门的39层风敏建筑物上进行了演示。结果表明,克里格模型的准确性取决于所考虑的输入变量的数量,无阻尼地板的平均均方根误差为2.5%,装有阻尼设备的地板的均方根误差分别为5%。还证明了最佳的刚度阻尼装置配置和LCC取决于结构系统改造的假定成本。不带阻尼器的地板的平均均方根误差为2.5%,配备阻尼器的地板的平均均方根误差为5%。还证明了最佳的刚度阻尼装置配置和LCC取决于结构系统改造的假定成本。不带阻尼器的地板的平均均方根误差为2.5%,配备阻尼器的地板的平均均方根误差为5%。还证明了最佳的刚度阻尼装置配置和LCC取决于结构系统改造的假定成本。
更新日期:2021-03-22
down
wechat
bug