当前位置: X-MOL 学术Soil Dyn. Earthq. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Experimental and numerical investigations on dynamic mechanical responses and failure process of gas-bearing coal under impact load
Soil Dynamics and Earthquake Engineering ( IF 4 ) Pub Date : 2021-01-15 , DOI: 10.1016/j.soildyn.2021.106579
Xiangguo Kong , Shugang Li , Enyuan Wang , Xu Wang , Yuxuan Zhou , Pengfei Ji , Haiqing Shuang , Shaorong Li , Zongyong Wei

With mining depth increasing, the mining structure becomes more and more complex. It is easy to cause dynamic disaster during coal mining. To reveal the failure process of gas-bearing coal at complex mining environment, the dynamics experiments were conducted through Split Hopkinson Pressure Bar of gas-bearing coal (SHPB-GAS) experimental system. The results showed that the filtered stress waveform presented to be sine-like. With the impact load increasing, the amplitude of incident wave, reflected wave and transmission wave also increased. After calculation of stress wave data, the stress-strain curves were obtained, which included linear elastic stage, step stage, yield and rupture stage. The dynamic mechanical strength increased with the increase of impact load, and the specimen developed from stratiform rupture with macro cracks to crush rupture in fragments. To verify the experimental results, COMSOL Multiphysics software was adopted to conduct numerical simulation. The simulation results indicated that the high stress area was formed at the end faces of specimen firstly and expanded to interior of specimen gradually under different impact load. High stress induced the plastic deformation in coal specimen, which also developed from end faces to specimen inside. These results were consistent with the phenomenon of experiments, which explained the causes of failure process of gas-bearing coal. Based on the experimental and simulation achievements, the formed mechanism of dynamic disaster induced by impact load were discussed.



中文翻译:

冲击载荷下含瓦斯煤动力力学响应及破坏过程的实验与数值研究

随着采矿深度的增加,采矿结构变得越来越复杂。煤矿开采过程中容易造成动态灾害。为了揭示含瓦斯煤在复杂开采环境下的破坏过程,通过含瓦斯煤的分裂霍普金森压力棒(SHPB-GAS)实验系统进行了动力学实验。结果表明,滤波后的应力波形呈正弦形。随着冲击载荷的增加,入射波,反射波和透射波的振幅也增加。计算出应力波数据后,得到了应力-应变曲线,包括线性弹性阶段,台阶阶段,屈服阶段和断裂阶段。动态机械强度随着冲击载荷的增加而增加,试样从具有宏观裂缝的层状破裂发展成碎片破裂破裂。为了验证实验结果,采用COMSOL Multiphysics软件进行了数值模拟。仿真结果表明,在不同的冲击载荷下,高应力区首先形成在试样端面,然后逐渐向试样内部扩展。高应力引起了煤样品的塑性变形,该变形也从端面发展到样品内部。这些结果与实验现象相吻合,解释了含瓦斯煤破坏过程的原因。在实验和仿真结果的基础上,探讨了冲击载荷引起的动态灾害形成机理。采用COMSOL Multiphysics软件进行数值模拟。仿真结果表明,在不同的冲击载荷下,高应力区首先形成在试样端面,然后逐渐向试样内部扩展。高应力引起了煤样品的塑性变形,该变形也从端面发展到样品内部。这些结果与实验现象相吻合,解释了含瓦斯煤破坏过程的原因。在实验和仿真结果的基础上,探讨了冲击载荷引起的动态灾害形成机理。采用COMSOL Multiphysics软件进行数值模拟。仿真结果表明,在不同的冲击载荷下,高应力区首先形成在试样端面,然后逐渐向试样内部扩展。高应力引起了煤样品的塑性变形,该变形也从端面发展到样品内部。这些结果与实验现象相吻合,解释了含瓦斯煤破坏过程的原因。在实验和仿真结果的基础上,探讨了冲击载荷引起的动态灾害形成机理。仿真结果表明,在不同的冲击载荷下,高应力区首先形成在试样端面,然后逐渐向试样内部扩展。高应力引起了煤样品的塑性变形,该变形也从端面发展到样品内部。这些结果与实验现象相吻合,解释了含瓦斯煤破坏过程的原因。在实验和仿真结果的基础上,探讨了冲击载荷引起的动态灾害形成机理。仿真结果表明,在不同的冲击载荷下,高应力区首先形成在试样端面,然后逐渐向试样内部扩展。高应力引起了煤样品的塑性变形,该变形也从端面发展到样品内部。这些结果与实验现象相吻合,解释了含瓦斯煤破坏过程的原因。在实验和仿真结果的基础上,探讨了冲击载荷引起的动态灾害形成机理。

更新日期:2021-01-16
down
wechat
bug