当前位置: X-MOL 学术Polym. Int. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Preparation and mechanical properties characterization: plasma-modified expanded vermiculite/fabric-reinforced foam composite materials
Polymer International ( IF 3.2 ) Pub Date : 2021-01-13 , DOI: 10.1002/pi.6188
Ting-Ting Li, Yandong Yang, Wenna Dai, Hongyang Wang, Jie Wang, Ching-Wen Lou, Jia-Horng Lin

Expanded vermiculite (EV) powder was treated with a plasma, and the organic material polyurethane (PU) was combined with the inorganic material EV powder and fabric by means of particle reinforcement and surface reinforcement to prepare a PU cushioning composite material. EV was processed with plasma treatment beforehand. The resulting PU foam cushioning composites were evaluated for static compression performance and dynamic buffering performance, thereby examining the influences of plasma treatment time and fabric type. According to the correlation between the structure and compression performance, the presence of EV provides more nucleation sites during the foaming, which in turn increases the cell density and the compression performance of the PU cushioning composites. In particular, after plasma treatment of 800-mesh EV for 20 and 30 min, the resulting composite foam had reduced cell diameter and increased density, and enhanced mechanical properties. Besides, in terms of surface reinforcement, covering the surface with fabric will make the foam enter the densification stage in advance, and its compression performance will be enhanced. As for the dynamic cushioning test, the surface-covering fabric can increase the impact performance, and the foam cushioning material covered with double-sided fabric is better. Specifically, PU foam covered with warp-knitted spacer fabric on both sides exhibits a maximal dynamic compression performance as the impact load is attenuated to 5941 N, suggesting an energy absorption of 96.20%. © 2021 Society of Chemical Industry

中文翻译:

制备及力学性能表征:等离子体改性膨胀蛭石/织物增强泡沫复合材料

膨胀蛭石(EV)粉体经等离子体处理,有机材料聚氨酯(PU)与无机材料EV粉体和织物通过颗粒增强和表面增强相结合,制备出PU缓冲复合材料。EV 事先经过等离子体处理。对所得 PU 泡沫缓冲复合材料的静态压缩性能和动态缓冲性能进行评估,从而检查等离子体处理时间和织物类型的影响。根据结构与压缩性能之间的相关性,EV的存在在发泡过程中提供了更多的成核位点,进而增加了PU缓冲复合材料的泡孔密度和压缩性能。特别是,在 800 目 EV 等离子体处理 20 和 30 分钟后,所得的复合泡沫具有减小的泡孔直径和增加的密度,并增强了机械性能。此外,在表面增强方面,用织物覆盖表面会使泡沫提前进入致密化阶段,增强其压缩性能。至于动态缓冲测试,表面覆盖的面料可以增加冲击性能,双面面料覆盖的泡沫缓冲材料更好。具体而言,当冲击载荷衰减至 5941 N 时,两侧覆盖有经编间隔织物的 PU 泡沫表现出最大的动态压缩性能,表明能量吸收率为 96.20%。© 2021 化学工业协会 在表面增强方面,用织物覆盖表面会使泡沫提前进入致密化阶段,其压缩性能将得到增强。至于动态缓冲测试,表面覆盖的面料可以增加冲击性能,双面面料覆盖的泡沫缓冲材料更好。具体而言,当冲击载荷衰减至 5941 N 时,两侧覆盖有经编间隔织物的 PU 泡沫表现出最大的动态压缩性能,表明能量吸收率为 96.20%。© 2021 化学工业协会 在表面增强方面,用织物覆盖表面会使泡沫提前进入致密化阶段,其压缩性能将得到增强。至于动态缓冲测试,表面覆盖的面料可以增加冲击性能,双面面料覆盖的泡沫缓冲材料更好。具体而言,当冲击载荷衰减至 5941 N 时,两侧覆盖有经编间隔织物的 PU 泡沫表现出最大的动态压缩性能,表明能量吸收率为 96.20%。© 2021 化学工业协会 表面包覆面料可以增加冲击性能,采用双面面料包覆的泡棉缓冲材料效果更好。具体而言,当冲击载荷衰减至 5941 N 时,两侧覆盖有经编间隔织物的 PU 泡沫表现出最大的动态压缩性能,表明能量吸收率为 96.20%。© 2021 化学工业协会 表面包覆面料可以增加冲击性能,采用双面面料包覆的泡棉缓冲材料效果更好。具体而言,当冲击载荷衰减至 5941 N 时,两侧覆盖有经编间隔织物的 PU 泡沫表现出最大的动态压缩性能,表明能量吸收率为 96.20%。© 2021 化学工业协会
更新日期:2021-01-13
down
wechat
bug