当前位置: X-MOL 学术New J. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Transition metal complexes as potential tools against SARS-CoV-2: an in silico approach
New Journal of Chemistry ( IF 3.3 ) Pub Date : 2020-11-18 , DOI: 10.1039/d0nj04578k
Maynak Pal 1, 2, 3, 4 , Dulal Musib 1, 2, 3, 4 , Mithun Roy 1, 2, 3, 4
Affiliation  

The current global pandemic crisis caused by the outbreak of the SARS-CoV-2 virus has caused more than 1.3 million deaths worldwide and forced social distancing among the people affecting the socio-economic condition. The virus is spread by human contact and respiratory droplets targeting the ACE2 receptors of alveolar cells. The virus replication process involves the translation of the viral genome, which involves the formation of an RNA-dependent RNA polymerase complex and the inhibition of the replication process of the virus can be triggered by the inhibition of the RNA-dependent RNA polymerase complex. The WHO has approved the repurposing of current antiviral drugs as the treatment protocol for COVID-19. Nevertheless, the use of present antiviral drugs and strict social distancing are unable to stop the outbreak of COVID-19. Transition metal complexes, by virtue of a broad spectrum of oxidation numbers, valencies, geometries, tunable redox, and kinetic and thermodynamic properties provide us with a platform in considering such compounds as the viable alternative of the present re-purposed antiviral drugs against SARS-CoV-2. Herein, we have selected eleven metal-based antiviral agents and performed molecular docking in the RdRp complex of SARS-CoV-2. The docking results revealed that metal complexes potentially inhibit the RdRp of SARS-Cov-2 the binding energy (−10.24 kcal mol−1) of which is comparably higher with respect to the reported binding energies of the conventional re-purposed drugs like Chloroquine, Remdesivir, Ribavirin, etc. (−4 to −7 kcal mol−1). The most competent candidate shows the highest binding energy of −10.24 kcal mol−1 corresponding to ferroquine derivative complex 6. The results are of paramount importance and enable us to consider these transition metal complexes as the potential treatment modality against SARS-CoV-2 and warrant further in vitro or in vivo screening of these complexes in the clinical arena of COVID-19 research.

中文翻译:

过渡金属配合物作为抗SARS-CoV-2的潜在工具:计算机方法

由SARS-CoV-2病毒爆发引起的当前全球大流行危机已导致全球超过130万人死亡,并迫使人们之间的社会隔离影响了社会经济状况。该病毒通过人接触和靶向肺泡细胞ACE2受体的呼吸道飞沫传播。病毒复制过程涉及病毒基因组的翻译,其涉及RNA依赖性RNA聚合酶复合物的形成,并且病毒复制过程的抑制可以通过抑制RNA依赖性RNA聚合酶复合物来触发。世界卫生组织已批准重新使用当前的抗病毒药物作为COVID-19的治疗方案。然而,使用现有的抗病毒药物和严格的社会隔离并不能阻止COVID-19的爆发。过渡金属配合物凭借广泛的氧化数,化合价,几何形状,可调节的氧化还原以及动力学和热力学性质,为我们提供了一个平台,可将此类化合物视为目前针对SARS-S的改用抗病毒药物的可行替代品冠状病毒2。在这里,我们选择了11种基于金属的抗病毒剂,并在SARS-CoV-2的RdRp复合物中进行了分子对接。对接结果表明,金属配合物可能会抑制SARS-Cov-2的RdRp的结合能(−10.24 kcal mol 我们选择了11种基于金属的抗病毒剂,并在SARS-CoV-2的RdRp复合物中进行了分子对接。对接结果表明,金属络合物可能抑制SARS-Cov-2的RdRp的结合能(−10.24 kcal mol 我们选择了11种基于金属的抗病毒剂,并在SARS-CoV-2的RdRp复合物中进行了分子对接。对接结果表明,金属配合物可能会抑制SARS-Cov-2的RdRp的结合能(−10.24 kcal mol-1)相对于传统改用药物如氯喹,伦德昔韦,利巴韦林的报道结合能更高(-4至-7 kcal mol -1)。最有能力的候选人显示出-10.24 kcal mol -1的最高结合能,对应于铁喹啉衍生物配合物6。该结果至关重要,使我们能够将这些过渡金属配合物视为针对SARS-CoV-2的潜在治疗方式,并有必要COVID-19研究的临床舞台上进一步对这些配合物进行体外体内筛选。
更新日期:2021-01-13
down
wechat
bug