Journal of the ACM ( IF 1.686 ) Pub Date : 2021-01-13 , DOI: 10.1145/3431922 Iddo Tzameret; Stephen A. Cook
Aiming to provide weak as possible axiomatic assumptions in which one can develop basic linear algebra, we give a uniform and integral version of the short propositional proofs for the determinant identities demonstrated over GF(2) in Hrubeš-Tzameret [15]. Specifically, we show that the multiplicativity of the determinant function and the Cayley-Hamilton theorem over the integers are provable in the bounded arithmetic theory VNC2; the latter is a first-order theory corresponding to the complexity class NC2 consisting of problems solvable by uniform families of polynomial-size circuits and O(log2 n)-depth. This also establishes the existence of uniform polynomial-size propositional proofs operating with NC2-circuits of the basic determinant identities over the integers (previous propositional proofs hold only over the two-element field).
中文翻译:

行列式标识的统一,整体和可行的证明
为了提供一个可以发展基本线性代数的尽可能弱的公理假设,我们给出了在Hrubeš-Tzameret[15]中通过GF(2)证明的行列式身份的简短命题证明的统一和完整版本。具体来说,我们证明了行列式函数和Cayley-Hamilton定理在整数上的可乘性在有界算术理论VNC 2中是可证明的。后者是一阶理论,对应于复杂度等级NC 2,由可通过多项式大小电路的统一族和O(log 2 n)-深度。这也建立了使用整数的基本行列式恒等式的NC 2-回路的统一多项式大小的命题证明的存在(先前的命题证明仅适用于二元域)。