当前位置: X-MOL 学术Front. Energy Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multibody Dynamic Analysis of a Wind Turbine Drivetrain in Consideration of the Shaft Bending Effect and a Variable Gear Mesh Including Eccentricity and Nacelle Movement
Frontiers in Energy Research ( IF 3.4 ) Pub Date : 2020-11-24 , DOI: 10.3389/fenrg.2020.604414
Yonghui Park , Hyunchul Park , Zhe Ma , Jikun You , Wei Shi

Due to the energy crisis and global warming issues, the wind energy is becoming one of the most attractive renewable energy resources in the world. The drivetrains in the wind turbine tend to fail more prematurely than those in any other applications. Gearbox is the subsystem that causes the most downtime for the wind turbines. In the previous research, only the torsional flexibility of the shaft was considered in the drivetrain model. However, because the shaft is longer than other parts, and components connected by the shaft affect each other via shaft bending, the flexibility of the shaft cannot be ignored. In this study, a spherical joint that consists of three rotational springs was used to define the shaft bending. This shaft bending will affect the drivetrain rotation, the translational motion and the gear mesh contact force. Additionally, the eccentricity and the nacelle movement are analyzed due to the coupled motion. In this paper, a mathematical model of the drivetrain is proposed, which is a three-dimensional dynamic model that includes flexible bearings, a gear mesh model, shaft flexibility, eccentricity, and nacelle movement. The equation of motion of the drivetrain is derived using Lagrange's equation. The governing equation is solved numerically via direct numerical integration. The dynamic responses of the system and contact forces between the gear tooth in the time and frequency domains are calculated numerically. The study shows that this dynamic model of the drivetrain will be highly useful for subsequent studies on the wind turbine condition monitoring.



中文翻译:

考虑轴弯曲效应和包括偏心距和短舱运动的可变齿轮啮合的风力涡轮机传动系统多体动力学分析

由于能源危机和全球变暖问题,风能正成为世界上最有吸引力的可再生能源之一。与任何其他应用相比,风力涡轮机中的传动系统往往会过早失效。变速箱是导致风力发电机停机时间最多的子系统。在先前的研究中,在传动系统模型中只考虑了轴的扭转柔韧性。但是,由于轴比其他部分长,并且由轴连接的组件会通过轴弯曲而相互影响,因此不能忽略轴的柔韧性。在这项研究中,由三个旋转弹簧组成的球形接头用于定义轴的弯曲。这种轴弯曲将影响动力传动系统的旋转,平移运动和齿轮啮合压力。另外,由于耦合运动,分析了偏心率和机舱运动。在本文中,提出了传动系统的数学模型,该模型是一个三维动态模型,其中包括柔性轴承,齿轮啮合模型,轴柔性,偏心率和机舱运动。传动系统的运动方程式是使用拉格朗日方程式导出的。该控制方程通过直接数值积分在数值上求解。通过数值计算系统的动态响应以及时域和频域中齿轮齿之间的接触力。研究表明,该动力传动系统的动态模型将对后续的风机状态监测研究非常有用。提出了传动系统的数学模型,该模型是一个三维动态模型,其中包括挠性轴承,齿轮啮合模型,轴挠性,偏心率和机舱运动。传动系统的运动方程式是使用拉格朗日方程式导出的。该控制方程通过直接数值积分在数值上求解。通过数值计算系统的动态响应以及时域和频域中齿轮齿之间的接触力。研究表明,该动力传动系统的动态模型将对后续的风机状态监测研究非常有用。提出了传动系统的数学模型,该模型是一个三维动态模型,其中包括柔性轴承,齿轮啮合模型,轴柔性,偏心率和机舱运动。传动系统的运动方程式是使用拉格朗日方程式导出的。该控制方程通过直接数值积分在数值上求解。通过数值计算系统的动态响应以及时域和频域中齿轮齿之间的接触力。研究表明,该动力传动系统的动态模型将对后续的风机状态监测研究非常有用。传动系统的运动方程式是使用拉格朗日方程式导出的。该控制方程通过直接数值积分在数值上求解。通过数值计算系统的动态响应以及时域和频域中齿轮齿之间的接触力。研究表明,该动力传动系统的动态模型将对后续的风机状态监测研究非常有用。传动系统的运动方程式是使用拉格朗日方程式导出的。该控制方程通过直接数值积分在数值上求解。通过数值计算系统的动态响应以及时域和频域中齿轮齿之间的接触力。研究表明,该动力传动系统的动态模型将对后续的风机状态监测研究非常有用。

更新日期:2021-01-13
down
wechat
bug