当前位置: X-MOL 学术Water Resour. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Three‐Dimensional Distribution of Groundwater Residence Time Metrics in the Glaciated United States Using Metamodels Trained on General Numerical Simulation Models
Water Resources Research ( IF 5.4 ) Pub Date : 2021-01-12 , DOI: 10.1029/2020wr027335
J. J. Starn 1 , L. J. Kauffman 2 , C. S. Carlson 3 , J. E. Reddy 4 , M. N. Fienen 5
Affiliation  

Residence time distribution (RTD) is a critically important characteristic of groundwater flow systems; however, it cannot be measured directly. RTD can be inferred from tracer data with analytical models (few parameters) or with numerical models (many parameters). The second approach permits more variation in system properties but is used less frequently than the first because large‐scale numerical models can be resource intensive. Using a novel automated approach, a set of 115 inexpensive general simulation models (GSMs) was used to create RTD metrics (fraction of young groundwater, defined as <65 years old; mean travel time of young fraction; median travel time of old fraction; and mean path length). GSMs captured the general trends in measured tritium concentrations in 431 wells. Boosted Regression Tree metamodels were trained to predict these RTD metrics using available wall‐to‐wall hydrogeographic digital sets as explanatory features. The metamodels produced a three‐dimensional distribution of predictions throughout the glacial system that generally matched with the numerical model RTD metrics. In addition to the expected importance of aquifer thickness and recharge rate in predicting RTD metrics, two new data sets, Multi‐Order Hydrologic Position (MOHP) and hydrogeologic terrane were important predictors. These variables by themselves produced metamodels with Nash‐Sutcliffe efficiency close to the full metamodel. Metamodel predictions showed that the volume of young groundwater stored in the glaciated United States is about 6,000 km3, or about 0.5% of globally stored young groundwater.

中文翻译:

利用一般数值模拟模型训练的元模型,对美国冰川地区地下水停留时间度量的三维分布

停留时间分布(RTD)是地下水流动系统的一个至关重要的特征。但是,它不能直接测量。可以使用分析模型(少量参数)或数值模型(许多参数)从示踪剂数据推断RTD。第二种方法允许更多的系统属性变化,但使用频率低于第一种方法,因为大规模数值模型可能会占用大量资源。使用一种新颖的自动化方法,使用一组115个廉价的通用模拟模型(GSM)来创建RTD度量标准(年轻地下水的分数,定义为<65岁;年轻馏分的平均旅行时间;旧分数的中位数旅行时间;和平均路径长度)。GSM捕获了431口井中测得的concentrations浓度的总体趋势。使用可用的逐壁水文地理数字集作为解释特征,对增强回归树元模型进行了训练,以预测这些RTD指标。元模型在整个冰川系统中产生了三维预测分布,通常与数值模型RTD指标匹配。除了预测含水层厚度和补给率在预测RTD指标中的重要性外,两个新的数据集,多阶水文位置(MOHP)和水文地质地层也是重要的预测指标。这些变量本身产生的元模型具有接近完整元模型的Nash-Sutcliffe效率。元模型预测表明,冰川国家中储存的年轻地下水量约为6,000公里 元模型在整个冰川系统中产生了三维预测分布,通常与数值模型RTD指标匹配。除了预测含水层厚度和补给率在预测RTD指标中的重要性外,两个新的数据集,多阶水文位置(MOHP)和水文地质地层也是重要的预测指标。这些变量本身产生的元模型具有接近完整元模型的Nash-Sutcliffe效率。元模型预测显示,冰川国家中储存的年轻地下水量约为6,000公里 元模型在整个冰川系统中产生了三维预测分布,通常与数值模型RTD指标匹配。除了预测含水层厚度和补给率在预测RTD指标中的重要性外,两个新的数据集,多阶水文位置(MOHP)和水文地质地层也是重要的预测指标。这些变量本身产生的元模型具有接近完整元模型的Nash-Sutcliffe效率。元模型预测表明,冰川国家中储存的年轻地下水量约为6,000公里 这些变量本身产生的元模型具有接近完整元模型的Nash-Sutcliffe效率。元模型预测表明,冰川国家中储存的年轻地下水量约为6,000公里 这些变量本身产生的元模型具有接近完整元模型的Nash-Sutcliffe效率。元模型预测表明,冰川国家中储存的年轻地下水量约为6,000公里3,约占全球储存的年轻地下水的0.5%。
更新日期:2021-02-12
down
wechat
bug