当前位置: X-MOL 学术Pattern Recogn. Lett. › 论文详情
Facial micro-expressions as a soft biometric for person recognition
Pattern Recognition Letters ( IF 3.255 ) Pub Date : 2021-01-13 , DOI: 10.1016/j.patrec.2020.12.021
Usman Saeed

Soft biometrics, although not discriminant enough for person recognition provides additional information that aids traditional person recognition. Initially, attempts were made to integrate appearance-based facial soft biometrics, such as facial marks, skin color, and hair color/style, but more recently behavior-based facial soft biometrics, such as head dynamics, visual speech, and facial expressions have also been studied. Facial expressions are further classified as macro and micro-expressions and most of the existing studies using facial expressions as a soft biometric have focused on macro-expressions. Therefore, in this study, we investigate the utility of micro-expressions as a soft biometric for person recognition. The proposed system is based on the fusion of traditional facial features that model the facial appearance with soft biometric features that model the micro-expressions in an image sequence. We tested a texture-based traditional feature extraction technique, two motion-based soft biometric techniques, and several fusion methods at feature, rank, and decision level. The experiments were conducted on three commonly used micro-expression databases and exhibit an improvement of around 5% identification rate when soft biometric traits are fused with traditional face recognition at decision level.



中文翻译:

面部微表情可作为人识别的软生物识别

软的生物识别技术尽管不能对人的识别进行足够的区分,但它提供了有助于传统人识别的其他信息。最初,尝试整合基于外观的面部软生物特征,例如面部标记,皮肤颜色和头发的颜色/样式,但是最近,基于行为的面部软生物特征,例如头部动态,视觉语音和面部表情,已经集成在一起也进行了研究。面部表情被进一步分类为宏观和微观表达,并且大多数使用面部表情作为软生物特征的现有研究都集中在宏观表达上。因此,在这项研究中,我们调查了微表达作为一种用于人识别的软生物测定法的效用。所提出的系统基于将对面部外观建模的传统面部特征与对图像序列中的微表情建模的软生物特征的融合。我们测试了基于纹理的传统特征提取技术,两种基于运动的软生物特征技术以及几种在特征,等级和决策级别的融合方法。实验是在三个常用的微表达数据库上进行的,当将软生物特征与传统人脸识别在决策层融合时,其识别率提高了5%。

更新日期:2021-01-22
全部期刊列表>>
微生物研究
亚洲大洋洲地球科学
NPJ欢迎投稿
自然科研论文编辑
ERIS期刊投稿
欢迎阅读创刊号
自然职场,为您触达千万科研人才
spring&清华大学出版社
城市可持续发展前沿研究专辑
Springer 纳米技术权威期刊征稿
全球视野覆盖
施普林格·自然新
chemistry
物理学研究前沿热点精选期刊推荐
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
阿拉丁试剂right
上海中医药大学
浙江大学
西湖大学
化学所
北京大学
清华
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
清华大学-1
武汉大学
浙江大学
天合科研
x-mol收录
试剂库存
down
wechat
bug