当前位置: X-MOL 学术J. Mol. Graph. Model. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Molecular dynamics study at N2/H2O-rGO interfaces for nitrogen reduction reaction
Journal of Molecular Graphics and Modelling ( IF 2.9 ) Pub Date : 2021-01-13 , DOI: 10.1016/j.jmgm.2021.107840
Jianping Zeng 1 , Han Chen 2 , Chen Zhou 2 , Hongyu Liu 2 , Song Chen 2
Affiliation  

It is an emerging trend to develop synthetic ammonia via nitrogen reduction reaction(NRR) by using simple, economical and efficient catalysts under mild conditions. Due to the intrinsic rich-functional groups of the surface, its versatile tailorability and the true stability among all the two-dimensional materials, reduced graphene oxide (rGO) is drawing a rising attention of researchers to the NRR application. However, due to the hydrophobicity of C and hydrophilicity of oxygen-containing groups of rGO, the interface dynamics between rGO surface and N2 and H2O molecules, which are two basic precursors for catalytic NRR are still unclear up to date. Herein, we propose to explore this problem by constructing a hierarchical model for rGO-N2/H2O interface interaction and conducting molecular dynamics (MD) simulation at ambient conditions. We find a way to tune the function groups to maximize the adsorption of N2 and H2O molecules at the same time. H2O molecules are more likely to form hydrogen bonds with oxygen-containing groups of rGO in the near range. While in the remote region, N2 molecules tend to form non-bonding interactions with pure C atoms without oxygen-containing groups of rGO. These results will provide theoretical guidance for NRR based on rGO and rGO based materials.



中文翻译:

N 2 / H 2 O-rGO界面上氮还原反应的分子动力学研究

通过在温和条件下使用简单,经济和高效的催化剂,通过氮还原反应(NRR)来开发合成氨是一种新兴趋势。由于表面固有的丰富官能团,其通用的可定制性以及所有二维材料之间的真正稳定性,还原氧化石墨烯(rGO)引起了研究人员对NRR应用的关注。然而,由于rGO的C的疏水性和含氧基团的亲水性,至今仍不清楚rGO表面与作为催化NRR的两个基本前体的N 2和H 2 O分子之间的界面动力学。本文中,我们建议通过构建rGO-N 2 / H 2的层次模型来探索此问题。在环境条件下进行O界面相互作用并进行分子动力学(MD)模拟。我们找到了一种调节功能基团以同时最大化N 2和H 2 O分子吸附的方法。H 2 O分子更可能与rGO的含氧基团在近距离形成氢键。在偏远地区,N 2分子倾向于与没有rGO含氧基团的纯C原子形成非键相互作用。这些结果将为基于rGO和基于rGO的材料的NRR提供理论指导。

更新日期:2021-02-01
down
wechat
bug