当前位置: X-MOL 学术Addit. Manuf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fused filament fabrication of novel phase-change material functional composites
Additive Manufacturing ( IF 11.0 ) Pub Date : 2021-01-13 , DOI: 10.1016/j.addma.2021.101839
Thomas B. Freeman , Melissa A. Messenger , Casey J. Troxler , Kashif Nawaz , Rafael M. Rodriguez , Sandra K.S. Boetcher

Additively manufactured polymer heat exchangers are of recent interest in the thermal sciences due to their lightweight and intricate heat-transfer-enhancing geometrical features. The goal of the present research is to directly encapsulate phase-change material (PCM) into polymer filament for the purpose of 3D printing polymer heat exchangers capable of latent heat thermal energy storage and management. PCMs have the ability to absorb large amounts of latent heat while undergoing a solid-to-liquid phase change at a nearly constant temperature. Encapsulation or containment of PCMs is necessary to prevent leaking since the material continuously cycles between a liquid and a solid state. An organic-based PCM and high-density polyethylene (HDPE) were combined and extruded into a functional composite filament. For the first time, with the aid of a heated enclosure and HDPE build plates, it was demonstrated that these functional composite materials can be printed using fused filament fabrication (FFF). Printing HDPE is known to be difficult; however, based on what was observed in the current study, the PCM and HDPE composite was easier to print than pure HDPE. Thermal properties, such as latent heat of fusion, phase-change temperature, and thermal conductivity, of the composite filament and 3D printed samples were investigated and compared with compression-molded bulk material. The microstructures of the composite filament and 3D printed samples were visualized, and the basic structures of the HDPE and PCM within both the filament and 3D printed parts were clearly delineated.



中文翻译:

新型相变材料功能复合材料的熔丝制备

增材制造的聚合物换热器由于其轻巧而又复杂的热传递增强几何特征而在热科学领域引起了新的兴趣。本研究的目的是将相变材料(PCM)直接封装到聚合物细丝中,以实现能够潜热热能存储和管理的3D打印聚合物热交换器。PCM具有吸收大量潜热的能力,同时在几乎恒定的温度下经历了固液相变。PCM的封装或封闭对于防止泄漏是必要的,因为材料会在液态和固态之间不断循环。将有机基PCM和高密度聚乙烯(HDPE)合并在一起,并挤出成功能性复合长丝。首次,借助于加热的外壳和HDPE构建板,已证明可以使用熔丝制造(FFF)印刷这些功能性复合材料。众所周知,打印HDPE很困难。但是,根据当前研究发现,PCM和HDPE复合材料比纯HDPE更易于印刷。研究了复合长丝和3D打印样品的热性能,例如熔化潜热,相变温度和导热率,并将其与压缩成型的散装材料进行了比较。可视化了复合长丝和3D打印样品的微观结构,并清楚地描绘了长丝和3D打印部件中HDPE和PCM的基本结构。结果表明,这些功能性复合材料可以使用熔丝制造(FFF)进行印刷。众所周知,打印HDPE很困难。但是,根据当前研究发现,PCM和HDPE复合材料比纯HDPE更易于印刷。研究了复合长丝和3D打印样品的热性能,例如熔化潜热,相变温度和导热率,并将其与压缩成型的散装材料进行了比较。可视化了复合长丝和3D打印样品的微观结构,并清楚地描绘了长丝和3D打印部件中HDPE和PCM的基本结构。结果表明,这些功能性复合材料可以使用熔丝制造(FFF)进行印刷。众所周知,打印HDPE很困难。但是,根据当前研究发现,PCM和HDPE复合材料比纯HDPE更易于印刷。研究了复合长丝和3D打印样品的热性能,例如熔化潜热,相变温度和导热率,并将其与压缩成型的散装材料进行了比较。可视化了复合长丝和3D打印样品的微观结构,并清楚地描绘了长丝和3D打印部件中HDPE和PCM的基本结构。PCM和HDPE复合材料比纯HDPE更易于印刷。研究了复合长丝和3D打印样品的热性能,例如熔化潜热,相变温度和导热率,并将其与压缩成型的散装材料进行了比较。可视化了复合长丝和3D打印样品的微观结构,并清晰地描绘了长丝和3D打印部件中HDPE和PCM的基本结构。PCM和HDPE复合材料比纯HDPE更易于印刷。研究了复合长丝和3D打印样品的热性能,例如熔化潜热,相变温度和导热率,并将其与压缩成型的散装材料进行了比较。可视化了复合长丝和3D打印样品的微观结构,并清楚地描绘了长丝和3D打印部件中HDPE和PCM的基本结构。

更新日期:2021-01-19
down
wechat
bug