当前位置: X-MOL 学术Proc. Natl. Acad. Sci. U.S.A. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Photosynthesis-assisted remodeling of three-dimensional printed structures [Engineering]
Proceedings of the National Academy of Sciences of the United States of America ( IF 11.1 ) Pub Date : 2021-01-19 , DOI: 10.1073/pnas.2016524118
Kunhao Yu 1 , Zhangzhengrong Feng 1 , Haixu Du 1 , An Xin 1 , Kyung Hoon Lee 1 , Ketian Li 1 , Yipin Su 1 , Qiming Wang 2 , Nicholas X Fang 3 , Chiara Daraio 4
Affiliation  

The mechanical properties of engineering structures continuously weaken during service life because of material fatigue or degradation. By contrast, living organisms are able to strengthen their mechanical properties by regenerating parts of their structures. For example, plants strengthen their cell structures by transforming photosynthesis-produced glucose into stiff polysaccharides. In this work, we realize hybrid materials that use photosynthesis of embedded chloroplasts to remodel their microstructures. These materials can be used to three-dimensionally (3D)-print functional structures, which are endowed with matrix-strengthening and crack healing when exposed to white light. The mechanism relies on a 3D-printable polymer that allows for an additional cross-linking reaction with photosynthesis-produced glucose in the material bulk or on the interface. The remodeling behavior can be suspended by freezing chloroplasts, regulated by mechanical preloads, and reversed by environmental cues. This work opens the door for the design of hybrid synthetic-living materials, for applications such as smart composites, lightweight structures, and soft robotics.



中文翻译:

三维印刷结构的光合作用辅助重塑[工程]

由于材料疲劳或退化,工程结构的力学性能在使用寿命期间不断减弱。相比之下,生物体能够通过再生部分结构来增强其机械性能。例如,植物通过将光合作用产生的葡萄糖转化为坚硬的多糖来增强其细胞结构。在这项工作中,我们实现了利用嵌入叶绿体的光合作用来重塑其微观结构的混合材料。这些材料可用于三维 (3D) 打印功能结构,当暴露在白光下时,这些结构具有基质强化和裂纹愈合能力。该机制依赖于可 3D 打印的聚合物,该聚合物允许在材料本体或界面上与光合作用产生的葡萄糖进行额外的交联反应。重塑行为可以通过冷冻叶绿体暂停,通过机械预紧力调节,并通过环境线索逆转。这项工作为混合合成生物材料的设计打开了大门,适用于智能复合材料、轻质结构和软机器人等应用。

更新日期:2021-01-12
down
wechat
bug