当前位置: X-MOL 学术Thin-Walled Struct. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Elastic local buckling of three-flanged cross-sections
Thin-Walled Structures ( IF 6.4 ) Pub Date : 2021-01-12 , DOI: 10.1016/j.tws.2020.107251
Chunyan Quan , Andreas Fieber , Leroy Gardner

In current structural steel design specifications, the local buckling of cross-sections is typically treated on an element-by-element basis, with the boundary conditions along the adjoined longitudinal edges of the individual plates assumed to be simply-supported. In reality, cross-sections buckle locally as a whole and the individual plate elements interact. As a result, the boundary conditions along the adjoined longitudinal edges of the critical isolated plate (i.e. that with the lowest elastic local buckling stress) lie between lower and upper bounds of simply-supported and fixed, respectively. Based on this concept, explicit formulae to predict the elastic local buckling stress of full cross-sections of common profiles, including I-sections, have recently been developed (Gardner et al., 2019) [1]. In the present paper, the formulae for single I-sections set out in Gardner et al. (2019) [1] are extended to cover the case of three-flanged cross-sections that arise in longitudinally-stiffened plate girders and in the haunch and apex regions of portal frames. The geometry and loading of the studied cross-sections are assumed to remain constant along the member length, i.e. the influence of tapering and moment gradients on local buckling are not considered herein, but has been evaluated in parallel work (Quan et al., 2020) [2]. The proposed formulae are calibrated against results from finite strip analysis performed using CUFSM v4.05 (Li and Schafer, 2010) [3] on a range of three-flanged sections, and provide predictions of elastic local buckling stresses that are typically within 5% of the numerically obtained values.



中文翻译:

三凸缘横截面的弹性局部屈曲

在当前的结构钢设计规范中,横截面的局部屈曲通常在逐个元素的基础上进行处理,并且沿单个板的​​相邻纵向边缘的边界条件被假定为简单支撑。实际上,横截面整体上局部弯曲,并且各个板元件相互作用。结果,沿着临界隔离板的相邻纵向边缘的边界条件(即具有最小弹性局部屈曲应力的边界条件)分别位于简单支撑和固定的上下边界之间。基于这个概念,最近已经开发出明确的公式来预测常见轮廓的完整截面(包括I型截面)的弹性局部屈曲应力(Gardner等,2019)[1]。在本文中,Gardner等人提出的单个I型截面的公式。(2019)[1]扩展到涵盖在纵向加劲的板梁以及门框的腰部和顶点区域中出现的三折截面情况。假定研究截面的几何形状和载荷沿构件长度保持恒定,即,此处未考虑锥度和弯矩梯度对局部屈曲的影响,但已在平行工作中进行了评估(Quan等人,2020年) )[2]。根据使用CUFSM v4.05(Li和Schafer,2010年)[3]进行的有限条带分析的结果,对所提出的公式进行了校准(在一系列三翼型截面上),并提供了通常在5%以内的弹性局部屈曲应力的预测数值获得的值。(2019)[1]扩展到涵盖在纵向加劲的板梁以及门框的腰部和顶点区域中出现的三折截面情况。假定研究截面的几何形状和载荷沿构件长度保持恒定,即,此处未考虑锥度和弯矩梯度对局部屈曲的影响,但已在平行工作中进行了评估(Quan等人,2020年) )[2]。根据使用CUFSM v4.05(Li和Schafer,2010年)[3]进行的有限条带分析的结果,对所提出的公式进行了校准(在一系列三翼型截面上),并提供了通常在5%以内的弹性局部屈曲应力的预测数值获得的值。(2019)[1]扩展到涵盖在纵向加劲的板梁以及门框的腰部和顶点区域中出现的三折截面情况。假定研究截面的几何形状和载荷沿构件长度保持恒定,即,此处未考虑锥度和弯矩梯度对局部屈曲的影响,但已在平行工作中进行了评估(Quan等人,2020年) )[2]。根据使用CUFSM v4.05(Li和Schafer,2010年)[3]进行的有限条带分析的结果,对所提出的公式进行了校准(在一系列三翼型截面上),并提供了通常在5%以内的弹性局部屈曲应力的预测数值获得的值。

更新日期:2021-01-12
down
wechat
bug