当前位置: X-MOL 学术Org. Electron. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electronic synapses mimicked in bilayer organic-inorganic heterojunction based memristor
Organic Electronics ( IF 3.2 ) Pub Date : 2021-01-12 , DOI: 10.1016/j.orgel.2021.106062
Qiufan Liao , Yan Wang , Ziyu Lv , Ziyu Xiong , Jinrui Chen , Guo Ping Wang , Su-Ting Han , Ye Zhou

Electronic synapses implementing in-memory computing system could overcome the developing limitation on the energy efficiency of traditional von Neumann architecture. Compared with the high sensitivity of biological synapses, lower responsivity of the memristive synapses was found via the electrical stimulations. Here, poly{2,2-(2,5-bis(2-octyldodecyl)-3,6-dioxo-2,3,5,6- tetrahydropyrrolo[3,4-c]pyrrole-1,4-diyl)-dithieno[3,2-b]thiophene-5,5-diyl-alt-thiophen-2,5-diyl} (PDPPBTT)/zinc oxide (ZnO) based heterojunction is found to exhibit stable memristive switching behavior, which originates from the confined formation/rupture of filament in the two-layer interface region as the ions migrate with different transport rates in two layers. The implementing synaptic functions in the sensitive memristive device can realize the short-term plasticity and long-term plasticity when stimulated by the applied electrical signals with different stimulating rate. Similar to the biological synapse, the memory loss, memory transition, and the critical role of stimulation rate on the transition process, can be achieved in the as-prepared memristor device. The systematic demonstrations on the synaptic emulation may facilitate building bio-inspired device-level neuromorphic systems.



中文翻译:

在双层有机-无机异质结忆阻器中模仿的电子突触

实现内存计算系统的电子突触可以克服传统冯·诺依曼架构在能源效率方面的发展限制。与生物突触的高灵敏度相比,通过电刺激发现忆阻突触的响应性较低。在这里,聚{2,2-(2,5-双(2-辛基十二烷基)-3,6-二氧代-2,3,5,6-四氢吡咯并[3,4-c]吡咯-1,4-二基) -dithieno [3,2-b] thiophene-5,5-diyl-alt-thiophen-2,5-diyl}(PDPPBTT)/氧化锌(ZnO)基异质结表现出稳定的忆阻开关行为,其起源于离子在两层中以不同的传输速率迁移时,在两层界面区域中的细丝形成/破裂受到限制。在灵敏的忆阻装置中实现突触功能,当受到不同刺激率的电信号刺激时,可以实现短期可塑性和长期可塑性。与生物突触类似,可以在准备好的忆阻器器件中实现记忆丧失,记忆转变以及刺激率在转变过程中的关键作用。关于突触仿真的系统演示可能有助于构建受生物启发的设备级神经形态系统。

更新日期:2021-01-16
down
wechat
bug