当前位置: X-MOL 学术Int. J. Theor. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The Dynamics of Quantum-Memory-Assisted Entropic Uncertainty of Two-Qubit System in the XY Spin Chain Environments with Dzyaloshinsky-Moriya Interaction
International Journal of Theoretical Physics ( IF 1.4 ) Pub Date : 2021-01-01 , DOI: 10.1007/s10773-020-04708-6
Yanliang Zhang , Qingping Zhou , Guodong Kang , Maofa Fang

We investigate the dynamical behaviors of quantum-memory-assisted (QMA) entropic uncertainty for the central two-qubit system coupled to the N -site spin XY chain environment with z -component Dzyaloshinsky-Moriya (DM) interaction and external magnetic field, asymmetrically. The results show that the dynamics of QMA entropic uncertainty for a pair of Pauli observables are oscillatory and ascending gradually with evolution time, which is anti-correlated to the entanglement of the two-qubit system. We also find that QMA entropic uncertainty exhibits sudden change phenomena near the critical point of quantum phase transform both in the case of weak and strong coupling regimes, which can act as a new witness of the critical point of quantum phase transition. Meanwhile, the DM interactions of the spin chain environment have non-equivalent effects on the QMA entropic uncertainty when the external magnetic field strength is far from the critical point. Furthermore, the asymmetricallity of the qubit-environment couplings has slightly effects on QMA entropic uncertainty in the case of strong coupling regime of the two-qubit system. While, in the weak coupling regime of the two-qubit system, QMA entropic uncertainty is very sensitive to the asymmetricallity of qubit-environment couplings. Finally, the larger the number of spin sites of the environment, the more quickly the QMA entropic uncertainty increases to the maximal value both in the weak and strong coupling regimes of the two-qubit system.

中文翻译:

具有 Dzyaloshinsky-Moriya 相互作用的 XY 自旋链环境中双量子位系统的量子记忆辅助熵不确定性动力学

我们研究了中央双量子位系统的量子记忆辅助 (QMA) 熵不确定性的动力学行为,该系统耦合到 N 位自旋 XY 链环境,具有 z 分量 Dzyaloshinsky-Moriya (DM) 相互作用和外部磁场,不对称. 结果表明,QMA 熵不确定性对于一对泡利观测值的动力学是振荡的,并且随着演化时间逐渐上升,这与双量子比特系统的纠缠是反相关的。我们还发现,在弱耦合和强耦合情况下,QMA 熵不确定性在量子相变临界点附近表现出突变现象,这可以作为量子相变临界点的新见证。同时,当外部磁场强度远离临界点时,自旋链环境的 DM 相互作用对 QMA 熵不确定性具有非等效影响。此外,在双量子位系统强耦合机制的情况下,量子位-环境耦合的不对称性对 QMA 熵不确定性有轻微影响。而在双量子位系统的弱耦合状态下,QMA 熵不确定性对量子位-环境耦合的不对称性非常敏感。最后,环境中自旋位点的数量越大,QMA 熵不确定性在双量子位系统的弱耦合和强耦合机制中增加到最大值的速度就越快。在双量子位系统强耦合机制的情况下,量子位-环境耦合的不对称性对 QMA 熵不确定性有轻微影响。而在双量子位系统的弱耦合状态下,QMA 熵不确定性对量子位-环境耦合的不对称性非常敏感。最后,环境中自旋位点的数量越多,QMA 熵不确定性在双量子位系统的弱耦合和强耦合机制中增加到最大值的速度就越快。在双量子位系统强耦合机制的情况下,量子位-环境耦合的不对称性对 QMA 熵不确定性有轻微影响。而在双量子位系统的弱耦合状态下,QMA 熵不确定性对量子位-环境耦合的不对称性非常敏感。最后,环境中自旋位点的数量越大,QMA 熵不确定性在双量子位系统的弱耦合和强耦合机制中增加到最大值的速度就越快。
更新日期:2021-01-01
down
wechat
bug