当前位置: X-MOL 学术Comp. Part. Mech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
True shape modeling of bio-particulate matter flow in an aero-cyclone separator using CFD–DEM simulation
Computational Particle Mechanics ( IF 3.3 ) Pub Date : 2021-01-12 , DOI: 10.1007/s40571-020-00383-w
Mahmoud A. El-Emam , Ling Zhou , Wei Dong Shi , Chen Han

The multi-phase flow of air and bio-particulate matter exists in many biological and environmental systems such as aerodynamic separating devices, fluidized bed combustion, and feed processing machinery. Integration of the computational fluid dynamics (CFD) and discrete element method (DEM) codes was performed to study bio-particle loading ratios' effect on the cyclone device performance. Every individual particle's behavior was captured by a DEM model using Newton’s equations of motion, in which CFD modeled the continuum airflow for every computational cell scale through the Navier–Stokes equation. According to the high turbulence and chaotic behavior of the continuum airflow inside the cyclone separator, Reynolds stress turbulence model (RSM) was used. The particles used for testing and modeling were conducted on two mixture types of real-heterogeneous particulate matter, namely jojoba seeds and jojoba leaves, without any fly ash. The particles were geometrically modeled using their actual dimensions and shapes, considered the first head start research approach in the cyclonic separation and purification field. The influence of the interacting particle–particle and particle–boundary forces was taken into consideration. The numerical simulation results successfully predicted the cyclone performance at the designed conditions, which showed the best experimental data trend. These data are useful in future studies to modify the cyclone design and optimize bio-systems' operating conditions for separating the macroscopic particulate matter.



中文翻译:

使用CFD–DEM模拟对气旋分离器中的生物微粒物质流进行真实形状建模

空气和生物微粒物质的多相流存在于许多生物和环境系统中,例如空气动力学分离装置,流化床燃烧和进料加工机械。进行了计算流体动力学(CFD)和离散元素方法(DEM)代码的集成,以研究生物颗粒负载比对旋风分离器性能的影响。DEM模型使用牛顿运动方程式捕获每个粒子的行为,其中CFD通过Navier–Stokes方程对每个计算单元规模的连续气流进行建模。根据旋风分离器内部连续气流的高湍流和混沌行为,使用了雷诺应力湍流模型(RSM)。用于测试和建模的颗粒是在两种均质的非均质颗粒物混合物上进行的,即荷荷巴种子和荷荷巴叶,没有粉煤灰。使用颗粒的实际尺寸和形状对颗粒进行几何建模,这被认为是旋风分离和纯化领域的首个先入为主的研究方法。考虑了相互作用的粒子间和粒子边界间的影响。数值模拟结果成功地预测了设计条件下的旋风分离器性能,显示了最佳的实验数据趋势。这些数据可用于将来的研究中,以修改旋风分离器的设计并优化生物系统的运行条件,以分离宏观的颗粒物。即霍霍巴种子和霍霍巴叶,没有任何飞灰。使用颗粒的实际尺寸和形状对颗粒进行几何建模,这被认为是旋风分离和纯化领域的首个先入为主的研究方法。考虑了相互作用的粒子间和粒子边界间的影响。数值模拟结果成功地预测了设计条件下的旋风分离器性能,显示了最佳的实验数据趋势。这些数据可用于将来的研究中,以修改旋风分离器的设计并优化生物系统的运行条件,以分离宏观的颗粒物。即霍霍巴种子和霍霍巴叶,没有任何飞灰。使用颗粒的实际尺寸和形状对颗粒进行几何建模,这被认为是旋风分离和纯化领域的首个先入为主的研究方法。考虑了相互作用的粒子间和粒子边界间的影响。数值模拟结果成功地预测了在设计条件下的旋风分离器性能,显示了最佳的实验数据趋势。这些数据可用于将来的研究中,以修改旋风分离器的设计并优化生物系统的运行条件,以分离宏观的颗粒物。被认为是旋风分离和纯化领域中第一个领先的研究方法。考虑了相互作用的粒子间和粒子边界间的影响。数值模拟结果成功地预测了在设计条件下的旋风分离器性能,显示了最佳的实验数据趋势。这些数据可用于将来的研究中,以修改旋风分离器的设计并优化生物系统的运行条件,以分离宏观的颗粒物。被认为是旋风分离和纯化领域中第一个领先的研究方法。考虑了相互作用的粒子间和粒子边界间的影响。数值模拟结果成功地预测了设计条件下的旋风分离器性能,显示了最佳的实验数据趋势。这些数据可用于将来的研究中,以修改旋风分离器的设计并优化生物系统的运行条件,以分离宏观的颗粒物。

更新日期:2021-01-12
down
wechat
bug