当前位置: X-MOL 学术Cell Biosci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Structure, kinetic properties and biological function of mechanosensitive Piezo channels
Cell and Bioscience ( IF 7.5 ) Pub Date : 2021-01-09 , DOI: 10.1186/s13578-020-00522-z
Xiang-Zhi Fang , Ting Zhou , Ji-Qian Xu , Ya-Xin Wang , Miao-Miao Sun , Ya-Jun He , Shang-Wen Pan , Wei Xiong , Zhe-Kang Peng , Xue-Hui Gao , You Shang

Mechanotransduction couples mechanical stimulation with ion flux, which is critical for normal biological processes involved in neuronal cell development, pain sensation, and red blood cell volume regulation. Although they are key mechanotransducers, mechanosensitive ion channels in mammals have remained difficult to identify. In 2010, Coste and colleagues revealed a novel family of mechanically activated cation channels in eukaryotes, consisting of Piezo1 and Piezo2 channels. These have been proposed as the long-sought-after mechanosensitive cation channels in mammals. Piezo1 and Piezo2 exhibit a unique propeller-shaped architecture and have been implicated in mechanotransduction in various critical processes, including touch sensation, balance, and cardiovascular regulation. Furthermore, several mutations in Piezo channels have been shown to cause multiple hereditary human disorders, such as autosomal recessive congenital lymphatic dysplasia. Notably, mutations that cause dehydrated hereditary xerocytosis alter the rate of Piezo channel inactivation, indicating the critical role of their kinetics in normal physiology. Given the importance of Piezo channels in understanding the mechanotransduction process, this review focuses on their structural details, kinetic properties and potential function as mechanosensors. We also briefly review the hereditary diseases caused by mutations in Piezo genes, which is key for understanding the function of these proteins.

中文翻译:

机械敏压电通道的结构,动力学性质和生物学功能

机械转导将机械刺激与离子通量耦合,这对于参与神经元细胞发育,疼痛感和红细胞体积调节的正常生物学过程至关重要。尽管它们是关键的机械换能器,但哺乳动物中的机械敏感离子通道仍然难以识别。2010年,Coste及其同事在真核生物中揭示了一个新的机械活化阳离子通道家族,该通道由Piezo1和Piezo2通道组成。这些已被建议作为哺乳动物中长期寻求的机械敏感阳离子通道。Piezo1和Piezo2展现了独特的螺旋桨状结构,并已涉及各种关键过程的机械传导,包括触摸感,平衡和心血管调节。此外,研究表明,压电通道中的几种突变会引起人类多种遗传性疾病,例如常染色体隐性先天性淋巴发育不良。值得注意的是,引起脱水性遗传性干细胞增多症的突变会改变压电通道失活的速率,表明其动力学在正常生理中的关键作用。考虑到压电通道在理解机械转导过程中的重要性,本综述着重于其结构细节,动力学特性和作为机械传感器的潜在功能。我们还简要回顾了由压电基因突变引起的遗传性疾病,这是了解这些蛋白质功能的关键。导致脱水遗传性干细胞增多症的突变会改变压电通道失活的速率,表明其动力学在正常生理中的关键作用。考虑到压电通道在理解机械转导过程中的重要性,本综述着重于其结构细节,动力学特性和作为机械传感器的潜在功能。我们还简要回顾了由压电基因突变引起的遗传性疾病,这是了解这些蛋白质功能的关键。导致脱水遗传性干细胞增多症的突变会改变压电通道失活的速率,表明其动力学在正常生理中的关键作用。考虑到压电通道在理解机械转导过程中的重要性,本综述着重于其结构细节,动力学特性和作为机械传感器的潜在功能。我们还简要回顾了由压电基因突变引起的遗传性疾病,这是了解这些蛋白质功能的关键。
更新日期:2021-01-10
down
wechat
bug