Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Aero-engine dynamic model based on an improved compact propulsion system dynamic model
Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering ( IF 1.6 ) Pub Date : 2021-01-09 , DOI: 10.1177/0959651820984081
Qiangang Zheng 1 , Yong Wang 1 , Chongwen Jin 1 , Haibo Zhang 1
Affiliation  

The modern advanced aero-engine control methods are onboard dynamic model–based algorithms. In this article, a novel aero-engine dynamic modeling method based on improved compact propulsion system dynamic model is proposed. The aero-engine model is divided into inlet, core engine, surge margin and nozzle models for establishing sub-model in the compact propulsion system dynamic model. The model of core engine is state variable model. The models of inlet, surge margin and nozzle are nonlinear models which are similar to the component level model. A new scheduling scheme for basepoint control vector, basepoint state vector and basepoint output vector which considers the change of engine total inlet temperature is proposed to improve engine model accuracy especially the steady. The online feedback correction of measurable parameters is adopted to improve the steady and dynamic accuracy of model. The modeling errors of improved compact propulsion system dynamic model remain unchanged when engine total inlet temperature of different conditions are the same or changes small. The model accuracy of compact propulsion system dynamic model, especially the measurable parameters, is improved by online feedback correction. Moreover, the real-time performance of compact propulsion system dynamic model and improved compact propulsion system dynamic model are much better than component level model.



中文翻译:

基于改进型紧凑推进系统动力学模型的航空发动机动力学模型

现代先进的航空发动机控制方法是基于机载动态模型的算法。本文提出了一种基于改进型紧凑推进系统动力学模型的航空发动机动力学建模方法。航空发动机模型分为进气模型,核心发动机模型,喘振裕度模型和喷嘴模型,用于在紧凑型推进系统动力学模型中建立子模型。核心引擎的模型是状态变量模型。进气口,喘振裕度和喷嘴的模型是非线性模型,类似于组件级模型。提出了一种考虑发动机总进气温度变化的基点控制向量,基点状态向量和基点输出向量的新调度方案,以提高发动机模型的精度,尤其是稳定度。采用可测量参数的在线反馈校正,以提高模型的稳态和动态精度。当不同条件下的发动机总进气温度相同或变化较小时,改进的紧凑型推进系统动力学模型的建模误差保持不变。在线反馈校正提高了紧凑型推进系统动力学模型的模型精度,尤其是可测量参数。此外,紧凑型推进系统动力学模型的实时性和改进的紧凑型推进系统动力学模型的性能均优于组件级模型。在线反馈校正提高了紧凑型推进系统动力学模型的模型精度,尤其是可测量参数。此外,紧凑型推进系统动力学模型的实时性和改进的紧凑型推进系统动力学模型的性能均优于组件级模型。在线反馈校正提高了紧凑型推进系统动力学模型的模型精度,尤其是可测量参数。此外,紧凑型推进系统动力学模型的实时性和改进的紧凑型推进系统动力学模型的性能均优于组件级模型。

更新日期:2021-01-10
down
wechat
bug