当前位置: X-MOL 学术Geosci. Front. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Earthquake risk assessment in NE India using deep learning and geospatial analysis
Geoscience Frontiers ( IF 8.9 ) Pub Date : 2021-01-09 , DOI: 10.1016/j.gsf.2020.11.007
Ratiranjan Jena , Biswajeet Pradhan , Sambit Prasanajit Naik , Abdullah M. Alamri

Earthquake prediction is currently the most crucial task required for the probability, hazard, risk mapping, and mitigation purposes. Earthquake prediction attracts the researchers' attention from both academia and industries. Traditionally, the risk assessment approaches have used various traditional and machine learning models. However, deep learning techniques have been rarely tested for earthquake probability mapping. Therefore, this study develops a convolutional neural network (CNN) model for earthquake probability assessment in NE India. Then conducts vulnerability using analytical hierarchy process (AHP), Venn's intersection theory for hazard, and integrated model for risk mapping. A prediction of classification task was performed in which the model predicts magnitudes more than 4 Mw that considers nine indicators. Prediction classification results and intensity variation were then used for probability and hazard mapping, respectively. Finally, earthquake risk map was produced by multiplying hazard, vulnerability, and coping capacity. The vulnerability was prepared by using six vulnerable factors, and the coping capacity was estimated by using the number of hospitals and associated variables, including budget available for disaster management. The CNN model for a probability distribution is a robust technique that provides good accuracy. Results show that CNN is superior to the other algorithms, which completed the classification prediction task with an accuracy of 0.94, precision of 0.98, recall of 0.85, and F1 score of 0.91. These indicators were used for probability mapping, and the total area of hazard (21,412.94 Km2), vulnerability (480.98 Km2), and risk (34,586.10 Km2) was estimated.



中文翻译:

使用深度学习和地理空间分析的印度东北部地震风险评估

当前,地震预测是概率,危害,风险制图和缓解目标所需的最关键任务。地震预测吸引了学术界和工业界的研究人员的关注。传统上,风险评估方法使用了各种传统和机器学习模型。但是,很少对深度学习技术进行地震概率映射测试。因此,本研究开发了用于印度东北部地震概率评估的卷积神经网络(CNN)模型。然后使用层次分析法(AHP),维恩的危险交叉理论和风险映射的集成模型进行脆弱性分析。进行了分类任务的预测,其中模型预测了考虑四个指标的4 Mw以上的震级。然后将预测分类结果和强度变化分别用于概率和危害映射。最后,通过将灾害,脆弱性和应对能力相乘得出地震风险图。该漏洞是通过使用六个易受攻击的因素准备的,而应对能力是通过使用医院的数量和相关变量(包括可用于灾难管理的预算)来估计的。概率分布的CNN模型是一种可靠的技术,可提供良好的准确性。结果表明,CNN优于其他算法,该算法以0.94的精度,0.98的精度,0.85的召回率和F1分数0.91完成了分类预测任务。这些指标用于概率映射以及危害的总面积(21,412.94 Km 分别。最后,通过将灾害,脆弱性和应对能力相乘得出地震风险图。该漏洞是通过使用六个易受攻击的因素准备的,而应对能力是通过使用医院的数量和相关变量(包括可用于灾难管理的预算)来估计的。概率分布的CNN模型是一种鲁棒的技术,可提供良好的准确性。结果表明,CNN优于其他算法,该算法以0.94的精度,0.98的精度,0.85的召回率和F1分数0.91完成了分类预测任务。这些指标用于概率映射以及危害的总面积(21,412.94 Km 分别。最后,通过将灾害,脆弱性和应对能力相乘得出地震风险图。该漏洞是通过使用六个易受攻击的因素准备的,而应对能力是通过使用医院的数量和相关变量(包括可用于灾难管理的预算)来估计的。概率分布的CNN模型是一种鲁棒的技术,可提供良好的准确性。结果表明,CNN优于其他算法,该算法以0.94的精度,0.98的精度,0.85的召回率和F1分数0.91完成了分类预测任务。这些指标用于概率映射以及危害的总面积(21,412.94 Km 该漏洞是通过使用六个易受攻击的因素准备的,而应对能力是通过使用医院的数量和相关变量(包括可用于灾难管理的预算)来估计的。概率分布的CNN模型是一种鲁棒的技术,可提供良好的准确性。结果表明,CNN优于其他算法,该算法以0.94的精度,0.98的精度,0.85的召回率和F1分数0.91完成了分类预测任务。这些指标用于概率映射以及危害的总面积(21,412.94 Km 该漏洞是通过使用六个易受攻击的因素准备的,而应对能力是通过使用医院的数量和相关变量(包括可用于灾难管理的预算)来估计的。概率分布的CNN模型是一种鲁棒的技术,可提供良好的准确性。结果表明,CNN优于其他算法,该算法以0.94的精度,0.98的精度,0.85的召回率和F1分数0.91完成了分类预测任务。这些指标用于概率映射以及危害的总面积(21,412.94 Km 概率分布的CNN模型是一种鲁棒的技术,可提供良好的准确性。结果表明,CNN优于其他算法,该算法以0.94的精度,0.98的精度,0.85的召回率和F1分数0.91完成了分类预测任务。这些指标用于概率映射以及危害的总面积(21,412.94 Km 概率分布的CNN模型是一种鲁棒的技术,可提供良好的准确性。结果表明,CNN优于其他算法,该算法以0.94的精度,0.98的精度,0.85的召回率和F1分数0.91完成了分类预测任务。这些指标用于概率映射以及危害的总面积(21,412.94 Km2),易损性(480.98 Km 2)和风险(34,586.10 Km 2)。

更新日期:2021-01-10
down
wechat
bug