当前位置: X-MOL 学术J. Comb. Optim. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Approximation algorithm for the multicovering problem
Journal of Combinatorial Optimization ( IF 1 ) Pub Date : 2021-01-09 , DOI: 10.1007/s10878-020-00688-9
Abbass Gorgi , Mourad El Ouali , Anand Srivastav , Mohamed Hachimi

Let \(\mathcal {H}=(V,\mathcal {E})\) be a hypergraph with maximum edge size \(\ell \) and maximum degree \(\varDelta \). For a given positive integers \(b_v\), \(v\in V\), a set multicover in \(\mathcal {H}\) is a set of edges \(C \subseteq \mathcal {E}\) such that every vertex v in V belongs to at least \(b_v\) edges in C. Set multicover is the problem of finding a minimum-cardinality set multicover. Peleg, Schechtman and Wool conjectured that for any fixed \(\varDelta \) and \(b:=\min _{v\in V}b_{v}\), the problem of set multicover is not approximable within a ratio less than \(\delta :=\varDelta -b+1\), unless \(\mathcal {P}=\mathcal {NP}\). Hence it’s a challenge to explore for which classes of hypergraph the conjecture doesn’t hold. We present a polynomial time algorithm for the set multicover problem which combines a deterministic threshold algorithm with conditioned randomized rounding steps. Our algorithm yields an approximation ratio of \(\max \left\{ \frac{148}{149}\delta , \left( 1- \frac{ (b-1)e^{\frac{\delta }{4}}}{94\ell } \right) \delta \right\} \) for \(b\ge 2\) and \(\delta \ge 3\). Our result not only improves over the approximation ratio presented by El Ouali et al. (Algorithmica 74:574, 2016) but it’s more general since we set no restriction on the parameter \(\ell \). Moreover we present a further polynomial time algorithm with an approximation ratio of \(\frac{5}{6}\delta \) for hypergraphs with \(\ell \le (1+\epsilon )\bar{\ell }\) for any fixed \(\epsilon \in [0,\frac{1}{2}]\), where \(\bar{\ell }\) is the average edge size. The analysis of this algorithm relies on matching/covering duality due to Ray-Chaudhuri (1960), which we convert into an approximative form. The second performance disprove the conjecture of Peleg et al. for a large subclass of hypergraphs.



中文翻译:

多重覆盖问题的近似算法

\(\ mathcal {H} =(V,\ mathcal {E})\)是最大边尺寸为\(\ ell \)和最大度数为\(\ varDelta \)的超图。对于给定的正整数\(b_v \)\(v \ in V \)\(\ mathcal {H} \)中的set multicover是边的集合\(C \ subseteq \ mathcal {E} \)这样,每一个顶点vv属于至少\(b_v \)边缘在ç集合多重覆盖是找到最小基数集合多重覆盖的问题。Peleg,Schechtman和Wool猜想对于任何固定的\(\ varDelta \)\(b:= \ min _ {v \ in V} b_ {v} \),在小于\(\ delta:= \ varDelta -b + 1 \)的比率内,设置multicover的问题不是近似的,除非\(\ mathcal {P} = \ mathcal {NP} \)。因此,探索该猜想不适合哪些类的超图是一个挑战。我们提出了一种针对集合多重覆盖问题的多项式时间算法,该算法结合了确定性阈值算法和条件随机舍入步骤。我们的算法得出\(\ max \ left \ {\ frac {148} {149} \ delta,\ left(1- \ frac {(b-1)e ^ {\ frac {\ delta} {4 }}} {94 \ ELL} \右)\增量\右\} \)\(b \ GE 2 \)\(\增量\ GE 3 \)。我们的结果不仅改善了El Ouali等人提出的近似比率。(Algorithmica 74:574,2016),但由于我们对参数\(\ ell \)没有设置任何限制,因此它更具通用性。此外,对于具有\(\ ell \ le(1+ \ epsilon)\ bar {\ ell} \)的超图,我们提出了一种进一步的多项式时间算法,其近似比为\(\ frac {5} {6} \ delta \)对于任何固定的\(\ epsilon \ in [0,\ frac {1} {2}] \),其中\(\ bar {\ ell} \)是平均边缘尺寸。该算法的分析依赖于归因于Ray-Chaudhuri(1960)的匹配/覆盖对偶,我们将其转换为近似形式。第二种表现反驳了Peleg等人的猜想。用于超图的大子类。

更新日期:2021-01-10
down
wechat
bug