当前位置: X-MOL 学术IEEE Trans. Terahertz Sci. Tech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Antenna-coupled graphene field-effect transistors as a terahertz imaging array
IEEE Transactions on Terahertz Science and Technology ( IF 3.2 ) Pub Date : 2021-01-01 , DOI: 10.1109/tthz.2020.3021353
Federica Bianco , Vaidotas Miseikis , Daniele Perenzoni , Camilla Coletti , Matteo Perenzoni , Alessandro Tredicucci

Terahertz radiation is extremely suitable for various imaging applications. In real life, these range from food or pharmaceutical quality control to illegal materials or human security control inspections. Despite its great potential, the wide usage and commercialization of terahertz imaging systems are still limited by the lack of compact technologies. The emerging graphene-based devices can efficiently contribute to fill this gap, offering higher versatility, scalability, and superior electronic properties compared to conventional semiconductors. In this work, we study a new scheme for realizing a multielement terahertz sensor, which is capable of multipixel parallel detection. The array consists of linearly distributed antenna-coupled graphene field-effect transistors, which are realized by exploiting a deterministic growth by chemical vapor deposition of single-crystal graphene. This novel growth technique ensures high material quality and offers large adaptability to different electronic device architectures. Relatively uniform terahertz detection performances (with a maximum homogeneity degree of 80$\%$) were obtained with a maximum responsivity of the order of 1 V/W and an estimated response time in the picosecond scale. These detectors have demonstrated to fulfill several main requirements for image sensors (pixel uniformity, operability, and scalability), becoming very promising candidates for the realization of commercial high-resolution room-temperature terahertz cameras.

中文翻译:

天线耦合石墨烯场效应晶体管作为太赫兹成像阵列

太赫兹辐射非常适合各种成像应用。在现实生活中,这些范围从食品或药品质量控制到非法材料或人员安全控制检查。尽管潜力巨大,但太赫兹成像系统的广泛使用和商业化仍然受到缺乏紧凑技术的限制。与传统半导体相比,新兴的基于石墨烯的器件可以有效地填补这一空白,提供更高的多功能性、可扩展性和卓越的电子特性。在这项工作中,我们研究了一种实现多元件太赫兹传感器的新方案,该传感器能够进行多像素并行检测。该阵列由线性分布的天线耦合石墨烯场效应晶体管组成,这是通过利用单晶石墨烯的化学气相沉积确定性生长来实现的。这种新颖的生长技术确保了高材料质量,并为不同的电子设备架构提供了很大的适应性。获得相对均匀的太赫兹检测性能(最大均匀度为 80$\%$),最大响应率为 1 V/W,估计响应时间为皮秒级。这些探测器已被证明可以满足对图像传感器的几个主要要求(像素均匀性、可操作性和可扩展性),成为实现商用高分辨率室温太赫兹相机的非常有希望的候选者。这种新颖的生长技术确保了高材料质量,并为不同的电子设备架构提供了很大的适应性。获得相对均匀的太赫兹检测性能(最大均匀度为 80$\%$),最大响应率为 1 V/W,估计响应时间为皮秒级。这些探测器已被证明可以满足对图像传感器的几个主要要求(像素均匀性、可操作性和可扩展性),成为实现商用高分辨率室温太赫兹相机的非常有希望的候选者。这种新颖的生长技术确保了高材料质量,并为不同的电子设备架构提供了很大的适应性。获得相对均匀的太赫兹检测性能(最大均匀度为 80$\%$),最大响应率为 1 V/W,估计响应时间为皮秒级。这些探测器已被证明可以满足对图像传感器的几个主要要求(像素均匀性、可操作性和可扩展性),成为实现商用高分辨率室温太赫兹相机的非常有希望的候选者。获得相对均匀的太赫兹检测性能(最大均匀度为 80$\%$),最大响应率为 1 V/W,估计响应时间为皮秒级。这些探测器已被证明可以满足对图像传感器的几个主要要求(像素均匀性、可操作性和可扩展性),成为实现商用高分辨率室温太赫兹相机的非常有希望的候选者。获得相对均匀的太赫兹检测性能(最大均匀度为 80$\%$),最大响应率为 1 V/W,估计响应时间为皮秒级。这些探测器已被证明可以满足对图像传感器的几个主要要求(像素均匀性、可操作性和可扩展性),成为实现商用高分辨率室温太赫兹相机的非常有希望的候选者。
更新日期:2021-01-01
down
wechat
bug