当前位置: X-MOL 学术ACS Appl. Energy Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Concurrently Improved Breakdown Strength and Storage Energy Capacitance in the Core–Shell-Structured Aromatic Polythiourea@BaTiO3 Polymer Nanocomposites Induced by the Nature of Interfacial Polarization and Crystallization
ACS Applied Energy Materials ( IF 6.4 ) Pub Date : 2021-01-08 , DOI: 10.1021/acsaem.0c02396
Yingxin Chen 1 , Minhui Xu 1 , Xuanya Li 1 , Jiahao Liu 2 , Ning Zhu 1 , Muhua Zhang 1 , Weiming Ma 1 , Zhen Shi 1 , Jian Zhang 1 , Xiaoxiao Lu 3 , Xuefeng Zhang 1
Affiliation  

Interfacial architecture of the nanofillers is the critical factor to achieve desirable dielectric properties in the polymer nanocomposites. However, a basic understanding of the role of interfacial polarization and crystallization on energy storage is very seldom. Herein, we synthesized the core–shell aromatic polythiourea@BaTiO3 nanoparticles (ArPTU@BT NPs) as nanofillers to prepare ferroelectric polymer nanocomposites. Remarkably, direct detections of interfacial morphology, polarization, and interfacial crystallization mechanism in ferroelectric nanocomposites were revealed by a combination of atomic force microscopy (AFM) and flash differential scanning calorimetry sites (Flash DSC), which were experimentally detected by AFM, can suppress the local electric field and the migration of charges, leading to a high breakdown strength (Eb). Second, the addition of ArPTU@BT NPs, which were served as heterogeneous nucleators, can promote the crystallization rate (t0.5) and form a tiny spherulite, which is beneficial for reducing the energy barrier of dipole switching and enhancing the interfacial polarization to achieve a high dielectric constant (ε) as well as an ultrahigh energy density (U). Our systematic studies provide the possibilities in understanding interfacial behaviors to design ferroelectric polymer nanocomposites for high-capacitance capacitor applications.

中文翻译:

界面极化和结晶性质诱导的核-壳结构芳族聚硫脲@BaTiO 3聚合物纳米复合材料同时提高了击穿强度和储能电容

纳米填料的界面结构是在聚合物纳米复合材料中获得理想介电性能的关键因素。但是,很少了解界面极化和结晶在能量存储中的作用。在这里,我们合成了核-壳芳香族聚硫脲@BaTiO 3纳米填料(ArPTU @ BT NPs)作为纳米填料,可制备铁电聚合物纳米复合材料。值得注意的是,通过原子力显微镜(AFM)和闪式差示扫描量热法(Flash DSC)的组合检测,可以直接检测铁电纳米复合材料的界面形态,极化和界面结晶机理,这可以抑制AFM。局部电场和电荷迁移,导致较高的击穿强度(E b)。其次,添加ArPTU @ BT NP作为异质成核剂,可以促进结晶速率(t 0.5)并形成微小的球晶,这有利于降低偶极子切换的能垒,增强界面极化,从而实现高介电常数(ε)和超高能量密度(U)。我们的系统研究为理解界面行为提供了可能性,以设计用于高电容电容器应用的铁电聚合物纳米复合材料。
更新日期:2021-01-25
down
wechat
bug