当前位置: X-MOL 学术Biosens. Bioelectron. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Precise and rapid solvent-assisted geometric protein self-patterning with submicron spatial resolution for scalable fabrication of microelectronic biosensors
Biosensors and Bioelectronics ( IF 12.6 ) Pub Date : 2021-01-08 , DOI: 10.1016/j.bios.2021.112968
Jun'ya Tsutsumi , Anthony P.F. Turner , Wing Cheung Mak

Precise and high-resolution coupling of functional proteins with micro-transducers is critical for the manufacture of miniaturized bioelectronic devices. Moreover, electrochemistry on microelectrodes has had a major impact on electrochemical analysis and sensor technologies, since the small size of microelectrode affects the radial diffusion flux of the analyte to deliver enhanced mass transport and electrode kinetics. However, a large technology gap has existed between the process technology associated with such microelectronics and the conventional bio-conjugation techniques that are generally used. Here, we report on a high-resolution and rapid geometric protein self-patterning (GPS) method using solvent-assisted protein-micelle adsorption printing to couple biomolecules onto microelectrodes with a minimum feature size of 5 μm and a printing time of about a minute. The GPS method is versatile for micropatterning various biomolecules including enzymes, antibodies and avidin-biotinylated proteins, delivering good geometric alignment and preserving biological functionality. We further demonstrated that enzyme-coupled microelectrodes for glucose detection exhibited good electrochemical performance which benefited from the GPS method to maximize effective signal transduction at the bio-interface. These microelectrode arrays maintained fast convergent analyte diffusion displaying typical steady-state I–V characteristics, fast response times, good linear sensitivity (0.103 nA mm−2 mM−1, R2 = 0.995) and an ultra-wide linear dynamic range (2–100 mM). Our findings provide a new technical solution for the precise and accurate coupling of biomolecules to a microelectronic array with important implications for the scaleup and manufacture of diagnostics, biofuel cells and bioelectronic devices that could not be realized economically by other existing techniques.



中文翻译:

具有亚微米空间分辨率的精确,快速溶剂辅助几何蛋白质自构图,可用于微电子生物传感器的可扩展制造

功能蛋白与微传感器的精确和高分辨率偶联对于制造微型生物电子设备至关重要。此外,微电极上的电化学对电化学分析和传感器技术产生了重大影响,因为微电极的小尺寸会影响分析物的径向扩散通量,从而提高质量传输和电极动力学。然而,与这种微电子学相关的处理技术与通常使用的常规生物共轭技术之间存在很大的技术差距。这里,我们报告了一种高分辨率和快速的几何蛋白质自构图(GPS)方法,该方法使用溶剂辅助的蛋白质-胶束吸附印刷技术将生物分子偶联到微电极上,最小特征尺寸为5μm,印刷时间约为一分钟。GPS方法适用于微图案化各种生物分子,包括酶,抗体和抗生物素蛋白生物素化的蛋白质,可提供良好的几何排列并保留生物学功能。我们进一步证明,用于葡萄糖检测的酶偶联微电极表现出良好的电化学性能,这得益于GPS方法,该方法可最大程度地提高生物界面处的有效信号转导。这些微电极阵列保持快速收敛的分析物扩散,显示出典型的稳态 GPS方法适用于微图案化各种生物分子,包括酶,抗体和抗生物素蛋白生物素化的蛋白质,可提供良好的几何排列并保留生物学功能。我们进一步证明,用于葡萄糖检测的酶偶联微电极表现出良好的电化学性能,这得益于GPS方法,可最大程度地提高生物界面的有效信号转导。这些微电极阵列保持快速收敛的分析物扩散,显示出典型的稳态 GPS方法适用于微图案化各种生物分子,包括酶,抗体和抗生物素蛋白生物素化的蛋白质,可提供良好的几何排列并保留生物学功能。我们进一步证明,用于葡萄糖检测的酶偶联微电极表现出良好的电化学性能,这得益于GPS方法,该方法可最大程度地提高生物界面处的有效信号转导。这些微电极阵列保持快速收敛的分析物扩散,显示出典型的稳态 我们进一步证明,用于葡萄糖检测的酶偶联微电极表现出良好的电化学性能,这得益于GPS方法,可最大程度地提高生物界面的有效信号转导。这些微电极阵列保持快速收敛的分析物扩散,显示出典型的稳态 我们进一步证明,用于葡萄糖检测的酶偶联微电极表现出良好的电化学性能,这得益于GPS方法,该方法可最大化生物界面处的有效信号转导。这些微电极阵列保持快速收敛的分析物扩散,显示出典型的稳态I–V特性,快速响应时间,良好的线性灵敏度(0.103 nA mm -2  mM -1,R 2  = 0.995)和超宽线性动态范围(2–100 mM)。我们的发现为将生物分子精确和准确地偶联到微电子阵列提供了一种新的技术解决方案,这对于诊断,生物燃料电池和生物电子设备的规模化和制造具有重要意义,而其他现有技术则无法实现这一目标。

更新日期:2021-01-12
down
wechat
bug