当前位置: X-MOL 学术Fish Physiol. Biochem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Characterization and evaluation of the tissue distribution of CRH , apelin , and GnRH2 reveal responses to feeding states in Schizothorax davidi
Fish Physiology and Biochemistry ( IF 2.9 ) Pub Date : 2021-01-08 , DOI: 10.1007/s10695-020-00922-5
Dengyue Yuan 1 , Bin Wang 2 , Tao Tang 2 , Luo Lei 3 , Chaowei Zhou 3 , Zhiqiong Li 2 , Lijun Li 4
Affiliation  

Schizothorax davidi is a rare fish in Southwest China and is considered a promising species for aquaculture. Compared with other teleosts, little is known about the endocrine regulation of feeding in this species. In this study, we identified the CRH, apelin, and GnRH2 genes in S. davidi and assessed the effects of different energy statuses on CRH, apelin, and GnRH2 expression. Our results showed that the full-length cDNA sequences of CRH, apelin, and GnRH2 of S. davidi were 995, 905, and 669 bp long, respectively. Furthermore, CRH was mainly expressed in the hypothalamus, telencephalon, and myelencephalon; apelin was highly expressed in the spleen and heart; and GnRH2 mRNA was widely distributed in all examined tissues, with the highest level in the hypothalamus. Notably, the levels of CRH and GnRH2 increased in the hypothalamus at 1 h and 3 h post-feeding, while hypothalamic apelin levels decreased. Conversely, CRH and GnRH2 expression in the hypothalamus significantly decreased after fasting for 7 days and returned to the control levels after re-feeding for 3 or 5 days. In contrast, fasting increased apelin levels in the hypothalamus. Overall, this study suggests that CRH, apelin, and GnRH2 play critical roles in appetite regulation in S. davidi. These results provide an essential groundwork to elucidate the appetite regulatory systems in S. davidi as well as in other teleosts.

更新日期:2021-01-08
down
wechat
bug