当前位置: X-MOL 学术Open Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Unsteady nano-bioconvective channel flow with effect of nth order chemical reaction
Open Physics ( IF 1.9 ) Pub Date : 2020-12-17 , DOI: 10.1515/phys-2020-0156
Md Faisal Md Basir, Kohilavani Naganthran, Ehtsham Azhar, Zaffar Mehmood, Swati Mukhopadhyay, Roslinda Nazar, Anuar Jamaludin, Dumitru Baleanu, Kottakkaran Sooppy Nisar, Ilyas Khan

Abstract Nanofluid bioconvective channel flow is an essential aspect of the recent healthcare industry applications, such as biomedical processing systems. Thus, the present work examined the influence of nth order chemical reaction in an unsteady nanofluid bioconvective channel flow in a horizontal microchannel with expanding/contracting walls. The suitable form of the similarity transformation is exercised to transform the governing boundary layer equations into a more straightforward form of system to ease the computation process. The Runge–Kutta method of fifth-order integration technique solved the reduced boundary layer system and generated the numerical results as the governing parameters vary. It is found that the destructive second-order chemical reaction enhances the mass transfer rate at the lower wall but deteriorates the mass transfer rate at the upper wall. The upper channel wall has a better heat transfer rate than the lower wall when the Reynolds number increases.

中文翻译:

具有n级化学反应作用的非稳态纳米生物对流通道流动

摘要 纳米流体生物对流通道流动是最近医疗保健行业应用的一个重要方面,例如生物医学处理系统。因此,本工作研究了在具有膨胀/收缩壁的水平微通道中不稳定纳米流体生物对流通道流动中 n 级化学反应的影响。运用相似变换的合适形式将控制边界层方程转换为更直接的系统形式,以简化计算过程。五阶积分技术的Runge-Kutta方法解决了简化的边界层系统,并随着控制参数的变化产生了数值结果。发现破坏性的二级化学反应提高了下壁的传质速率,但降低了上壁的传质速率。当雷诺数增加时,上通道壁比下壁具有更好的传热率。
更新日期:2020-12-17
down
wechat
bug