当前位置: X-MOL 学术Microgravity Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Thermal Performance of an Axially Grooved Heat Pipe Subjected to Multiple Heating Sources
Microgravity Science and Technology ( IF 1.8 ) Pub Date : 2021-01-07 , DOI: 10.1007/s12217-020-09851-7
Feng Yao , Naipu Bian , Yujuan Xia , Wei Chen , Renping Zhang

An experiment of axial temperature test for a heat pipe subjected to discrete heating sources is performed for deep understanding of the thermal characteristics of axial dovetail grooved heat pipe during the unsteady and steady state. The influences of heating length, heating source position, source configurations and incline angle on the temperature profiles, heat transfer limit of the heat pipe under single heating source and multiple heating sources are examined and analyzed. As can be seen from the experiment results, the heating source shows a pivotal role in the transient characteristics of the dovetail grooved heat pipe. The heated zone of the heat pipe shows higher temperature level than that of the non-heated zone, and there is a sharp temperature variation at the transition region of the heating zone and non-heating zone. When heat is imposed at the front end of heat pipe, a dramatic increase of temperature appears soon after the heating power has reached its heat transport limitation. And this limitation can still be increased when the heating source is imposed close to the cooling section as the distance between the heating source and the cooling section decreases. Increase of heating length narrows the gap of the temperature between evaporator section and condenser section, and hence lead to lower thermal resistance, higher thermal conductivity, and superior heat transport performance. Owing to the gravity assistance on the backflow fluid in microgrooves, better thermal performance can be observed when the heat pipe works under incline state than that under horizontal state.



中文翻译:

多种热源作用下轴向热管的热性能

为了深入了解轴向燕尾槽式热管在非稳态和稳态下的热特性,进行了经受离散热源的热管轴向温度测试的实验。研究并分析了加热长度,加热源位置,加热源配置和倾斜角度对单个加热源和多个加热源下热管的温度分布,传热极限的影响。从实验结果可以看出,热源在燕尾槽式热管的瞬态特性中起着关键作用。热管的加热区域显示出比非加热区域更高的温度水平,并且在加热区域和非加热区域的过渡区域存在急剧的温度变化。当在热管的前端施加热量时,在加热功率达到其热传递极限后不久,温度就会急剧上升。而且,当加热源靠近冷却区时,随着加热源与冷却区之间的距离减小,该限制仍然可以增加。加热长度的增加使蒸发器部分和冷凝器部分之间的温度间隙变窄,因此导致较低的热阻,较高的导热率和优异的热传递性能。由于微槽中回流流体的重力辅助作用,当热管在倾斜状态下工作时比在水平状态下工作时,可以观察到更好的热性能。加热功率达到其热传递极限后不久,温度便出现急剧升高。而且,当加热源靠近冷却区时,随着加热源与冷却区之间的距离减小,该限制仍然可以增加。加热长度的增加使蒸发器部分和冷凝器部分之间的温度间隙变窄,因此导致较低的热阻,较高的导热率和优异的热传递性能。由于微槽中回流流体的重力辅助作用,当热管在倾斜状态下工作时比在水平状态下工作时,可以观察到更好的热性能。加热功率达到其热传递极限后不久,温度便出现急剧上升。而且,当加热源靠近冷却区时,随着加热源与冷却区之间的距离减小,该限制仍然可以增加。加热长度的增加使蒸发器部分和冷凝器部分之间的温度间隙变窄,因此导致较低的热阻,较高的导热率和优异的热传递性能。由于微槽中回流流体的重力辅助作用,当热管在倾斜状态下工作时比在水平状态下工作时,可以观察到更好的热性能。而且,当加热源靠近冷却区时,随着加热源与冷却区之间的距离减小,该限制仍然可以增加。加热长度的增加使蒸发器部分和冷凝器部分之间的温度间隙变窄,因此导致较低的热阻,较高的导热率和优异的热传递性能。由于微槽中回流流体的重力辅助作用,当热管在倾斜状态下工作时比在水平状态下工作时,可以观察到更好的热性能。而且,当加热源靠近冷却区时,随着加热源与冷却区之间的距离减小,该限制仍然可以增加。加热长度的增加使蒸发器部分和冷凝器部分之间的温度间隙变窄,因此导致较低的热阻,较高的导热率和优异的热传递性能。由于微槽中回流流体的重力辅助作用,当热管在倾斜状态下工作时比在水平状态下工作时,可以观察到更好的热性能。因此导致较低的热阻,较高的热导率和优异的热传递性能。由于微槽中回流流体的重力辅助作用,当热管在倾斜状态下工作时比在水平状态下工作时,可以观察到更好的热性能。因此导致较低的热阻,较高的热导率和优异的热传递性能。由于微槽中回流流体的重力辅助,当热管在倾斜状态下工作时比在水平状态下工作时,可以观察到更好的热性能。

更新日期:2021-01-07
down
wechat
bug