当前位置: X-MOL 学术J. Royal Soc. Interface › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Computational analysis of dynamic allostery and control in the SARS-CoV-2 main protease
Journal of The Royal Society Interface ( IF 3.9 ) Pub Date : 2021-01-01 , DOI: 10.1098/rsif.2020.0591
Igors Dubanevics 1, 2 , Tom C. B. McLeish 2
Affiliation  

The COVID-19 pandemic caused by the novel coronavirus SARS-CoV-2 has no publicly available vaccine or antiviral drugs at the time of writing. An attractive coronavirus drug target is the main protease (Mpro, also known as 3CLpro) because of its vital role in the viral cycle. A significant body of work has been focused on finding inhibitors which bind and block the active site of the main protease, but little has been done to address potential non-competitive inhibition, targeting regions other than the active site, partly because the fundamental biophysics of such allosteric control is still poorly understood. In this work, we construct an elastic network model (ENM) of the SARS-CoV-2 Mpro homodimer protein and analyse its dynamics and thermodynamics. We found a rich and heterogeneous dynamical structure, including allosterically correlated motions between the homodimeric protease's active sites. Exhaustive 1-point and 2-point mutation scans of the ENM and their effect on fluctuation free energies confirm previously experimentally identified bioactive residues, but also suggest several new candidate regions that are distant from the active site, yet control the protease function. Our results suggest new dynamically driven control regions as possible candidates for non-competitive inhibiting binding sites in the protease, which may assist the development of current fragment-based binding screens. The results also provide new insights into the active biophysical research field of protein fluctuation allostery and its underpinning dynamical structure.

中文翻译:

SARS-CoV-2主蛋白酶动态变构和控制的计算分析

在撰写本文时,由新型冠状病毒 SARS-CoV-2 引起的 COVID-19 大流行尚无公开可用的疫苗或抗病毒药物。一个有吸引力的冠状病毒药物靶点是主要蛋白酶(Mpro,也称为 3CLpro),因为它在病毒循环中起着至关重要的作用。大量的工作集中在寻找结合和阻断主要蛋白酶活性位点的抑制剂,但很少有人解决潜在的非竞争性抑制,靶向活性位点以外的区域,部分原因是这种变构控制仍然知之甚少。在这项工作中,我们构建了 SARS-CoV-2 Mpro 同源二聚体蛋白的弹性网络模型 (ENM),并分析了其动力学和热力学。我们发现了一个丰富而异质的动力结构,包括同二聚体蛋白酶活性位点之间的变构相关运动。ENM 的详尽 1 点和 2 点突变扫描及其对波动自由能的影响证实了先前通过实验确定的生物活性残基,但也提出了几个远离活性位点但控制蛋白酶功能的新候选区域。我们的结果表明,新的动态驱动控制区域可能是蛋白酶中非竞争性抑制结合位点的候选者,这可能有助于开发当前基于片段的结合筛选。该结果还为蛋白质波动变构及其基础动力学结构的活跃生物物理研究领域提供了新的见解。ENM 的详尽 1 点和 2 点突变扫描及其对波动自由能的影响证实了先前通过实验确定的生物活性残基,但也提出了几个远离活性位点但控制蛋白酶功能的新候选区域。我们的结果表明,新的动态驱动控制区域可能是蛋白酶中非竞争性抑制结合位点的候选者,这可能有助于开发当前基于片段的结合筛选。该结果还为蛋白质波动变构及其基础动力学结构的活跃生物物理研究领域提供了新的见解。ENM 的详尽 1 点和 2 点突变扫描及其对波动自由能的影响证实了先前通过实验确定的生物活性残基,但也提出了几个远离活性位点但控制蛋白酶功能的新候选区域。我们的结果表明,新的动态驱动控制区域可能是蛋白酶中非竞争性抑制结合位点的候选者,这可能有助于开发当前基于片段的结合筛选。该结果还为蛋白质波动变构及其基础动力学结构的活跃生物物理研究领域提供了新的见解。但也提出了几个远离活性位点但控制蛋白酶功能的新候选区域。我们的结果表明,新的动态驱动控制区域可能是蛋白酶中非竞争性抑制结合位点的候选者,这可能有助于开发当前基于片段的结合筛选。该结果还为蛋白质波动变构及其基础动力学结构的活跃生物物理研究领域提供了新的见解。但也提出了几个远离活性位点但控制蛋白酶功能的新候选区域。我们的结果表明,新的动态驱动控制区域可能是蛋白酶中非竞争性抑制结合位点的候选者,这可能有助于开发当前基于片段的结合筛选。该结果还为蛋白质波动变构及其基础动力学结构的活跃生物物理研究领域提供了新的见解。
更新日期:2021-01-01
down
wechat
bug