当前位置: X-MOL 学术Astrophys. J.  › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Structure and Evolution of an Inter–Active Region Large-scale Magnetic Flux Rope
The Astrophysical Journal ( IF 4.9 ) Pub Date : 2021-01-05 , DOI: 10.3847/1538-4357/abc701
Aiying Duan 1 , Chaowei Jiang 2 , Peng Zou 2 , Xueshang Feng 2 , Jun Cui 1
Affiliation  

Magnetic flux rope (MFR) has been recognized as the key magnetic configuration of solar eruptions. While pre-eruption MFRs within the core of solar active regions (ARs) have been widely studied, those existing between two ARs, i.e., the intermediate ones in weak-field regions, were rarely studied. There are also major eruptions that occurred in such intermediate regions and study of the MFR there will help us understand the physics mechanism underlying the eruptions. Here, with a nonlinear force-free field reconstruction of solar coronal magnetic fields, we tracked the five-day evolution covering the full life of a large-scale inter-AR MFR forming between ARs NOAA11943 and 11944, which is closely cospatial with a long sigmoidal filament channel and an eruptive X1.2 flare occurring on 2014 January 7. Through topological analysis of the reconstructed 3D magnetic field, it is found that the MFR begins to form early on 2014 January 6; then with its magnetic twist degree continuously increasing for over 30 hr, it becomes highly twisted with field lines winding numbers approaching six turns, which might be the highest twisting degree in extrapolated MFRs that have been reported in the literature. The formation and strength of the MFR are attributed to a continuous sunspot rotation of AR11944 and flux cancellation between the two ARs. The MFR and its associated filaments exhibit no significant change across the flare time, indicating it is not responsible for the flare eruption. After the flare, the MFR slowly disappears, possibly due to the disturbance by the eruption.



中文翻译:

相互作用区域大型磁通量绳索的结构和演化

磁通量绳(MFR)被公认为是太阳喷发的关键磁性构造。虽然已经广泛研究了太阳活动区(AR)核心内的喷发前MFR,但很少研究两个AR之间存在的喷发MFR,即弱场区域中的中间MFR。在这些中间地区也发生了重大喷发,对MFR的研究将有助于我们了解喷发的物理机制。在这里,通过太阳日冕磁场的非线性无力场重构,我们追踪了五天的演化过程,涵盖了AR NOAA11943和11944之间形成的大规模AR间MFR的整个寿命,这与长时间2014年1月7日发生了S形锯齿状细丝通道和X1.2爆发性耀斑。通过对重建的3D磁场进行拓扑分析,发现MFR于2014年1月6日开始形成;而MFR于2014年1月6日开始形成。然后,随着其磁扭度持续增加超过30个小时,它变得高度扭曲,磁场线的绕线数接近六匝,这可能是文献中报道的外推MFR的最高扭曲度。MFR的形成和强度归因于AR11944的连续黑子旋转和两个AR之间的通量抵消。MFR及其相关的细丝在整个耀斑时间内没有显着变化,表明它与耀斑爆发无关。爆发后,MFR可能会由于喷发的干扰而缓慢消失。发现MFR在2014年1月6日开始形成;然后,随着其磁扭度持续增加超过30个小时,它变得高度扭曲,磁场线的绕线数接近六匝,这可能是文献中报道的外推MFR的最高扭曲度。MFR的形成和强度归因于AR11944的连续黑子旋转和两个AR之间的通量抵消。MFR及其相关的细丝在整个耀斑时间内没有显着变化,表明它与耀斑爆发无关。爆发后,MFR可能会由于喷发的干扰而缓慢消失。发现MFR在2014年1月6日开始形成;然后,随着其磁扭度持续增加超过30个小时,它变得高度扭曲,磁场线的绕线数接近六匝,这可能是文献中报道的外推MFR的最高扭曲度。MFR的形成和强度归因于AR11944的连续黑子旋转和两个AR之间的通量抵消。MFR及其相关的细丝在整个耀斑时间内没有显着变化,表明它与耀斑爆发无关。爆发后,MFR可能会由于喷发的干扰而缓慢消失。随着磁场线的绕线数接近六匝,它变得高度扭曲,这可能是文献中报道的外推MFR中的最高扭曲度。MFR的形成和强度归因于AR11944的连续黑子旋转和两个AR之间的通量抵消。MFR及其相关的细丝在整个耀斑时间内没有显着变化,表明它与耀斑爆发无关。爆发后,MFR可能会由于喷发的干扰而缓慢消失。随着磁场线的绕线数接近六匝,它变得高度扭曲,这可能是文献中报道的外推MFR中的最高扭曲度。MFR的形成和强度归因于AR11944的太阳黑子连续旋转和两个AR之间的通量抵消。MFR及其相关的细丝在整个耀斑时间内没有显着变化,表明它与耀斑爆发无关。爆发后,MFR可能会由于喷发的干扰而缓慢消失。MFR及其相关的细丝在整个耀斑时间内没有显着变化,表明它与耀斑爆发无关。爆发后,MFR可能会由于喷发的干扰而缓慢消失。MFR及其相关的细丝在整个耀斑时间内没有显着变化,表明它与耀斑爆发无关。爆发后,MFR可能会由于喷发的干扰而缓慢消失。

更新日期:2021-01-05
down
wechat
bug