当前位置: X-MOL 学术Mater. Sci. Eng. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Microstructure and mechanical behaviors of 6061 Al matrix hybrid composites reinforced with SiC and stainless steel particles
Materials Science and Engineering: A ( IF 6.4 ) Pub Date : 2021-01-06 , DOI: 10.1016/j.msea.2021.140732
Sisi Tang , Songying Shao , Haiyang Liu , Fulin Jiang , Dingfa Fu , Hui Zhang , Jie Teng

Hybrid aluminum matrix composites are appealing in the aviation, aerospace and automotive industries and have the potential to substitute single reinforced composites due to their enhanced comprehensive properties. In the present work, 6061 Al matrix composite hybrids reinforced with SiC and stainless steel particles were prepared to improve the strength and ductility by the powder metallurgy method. The mechanical properties, fracture behaviors and deformation mechanisms under various aging conditions were investigated by uniaxial tensile tests and microstructural characterizations. The results showed that the composite hybrid reinforced with SiC and stainless steel particles could effectively enhance the ductility without losing strength compared to the composite reinforced with single SiC particles. Under various artificial aging treatments, the mechanical properties of the composites changed, but the stainless steel particles always played a positive role in the composites and did not change the precipitation sequence of the aluminum matrix. The improvement in ductility was mainly attributed to the deformable nature of the reinforcement particles. The load was successfully transferred to the stainless steel particles and resulted in a uniform strain distribution of the hybrid reinforced composites. Conversely, the interfacial fracture caused by high interfacial dislocation pileup during deformation limited the plasticity of aluminum matrix composites reinforced with single SiC particles.



中文翻译:

SiC和不锈钢颗粒增强的6061 Al基杂化复合材料的组织和力学性能

混合铝基复合材料在航空,航天和汽车工业中很有吸引力,并且由于其增强的综合性能而具有替代单一增强复合材料的潜力。在目前的工作中,通过粉末冶金法制备了用SiC和不锈钢颗粒增强的6061 Al基复合材料杂化材料,以提高强度和延展性。通过单轴拉伸试验和微观结构表征研究了在不同时效条件下的力学性能,断裂行为和变形机理。结果表明,与单SiC颗粒增强的复合材料相比,SiC和不锈钢颗粒增强的复合材料可以有效地提高延展性而不降低强度。在各种人工时效处理下 复合材料的力学性能发生了变化,但不锈钢颗粒始终在复合材料中发挥积极作用,并且不会改变铝基体的析出顺序。延展性的改善主要归因于增强颗粒的可变形性。载荷已成功转移到不锈钢颗粒上,并导致杂化增强复合材料的应力分布均匀。相反,在变形过程中由于高位错位堆积而引起的界面断裂限制了单个SiC颗粒增强的铝基复合材料的塑性。但是,不锈钢颗粒始终在复合材料中发挥积极作用,并且不会改变铝基体的沉淀顺序。延展性的改善主要归因于增强颗粒的可变形性。载荷已成功转移到不锈钢颗粒上,并导致杂化增强复合材料的应力分布均匀。相反,在变形过程中由于高位错位堆积而引起的界面断裂限制了单个SiC颗粒增强的铝基复合材料的可塑性。但是,不锈钢颗粒始终在复合材料中发挥积极作用,并且不会改变铝基体的沉淀顺序。延展性的改善主要归因于增强颗粒的可变形性。载荷已成功转移到不锈钢颗粒上,并导致杂化增强复合材料的应力分布均匀。相反,在变形过程中由于高位错位堆积而引起的界面断裂限制了单个SiC颗粒增强的铝基复合材料的可塑性。载荷已成功转移到不锈钢颗粒上,并导致杂化增强复合材料的应力分布均匀。相反,在变形过程中由于高位错位堆积而引起的界面断裂限制了单个SiC颗粒增强的铝基复合材料的可塑性。载荷已成功转移到不锈钢颗粒上,并导致杂化增强复合材料的应力分布均匀。相反,在变形过程中由于高位错位堆积而引起的界面断裂限制了单个SiC颗粒增强的铝基复合材料的可塑性。

更新日期:2021-01-11
down
wechat
bug