当前位置: X-MOL 学术J. Mech. Phys. Solids › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Biomechanics of hair fibre growth: a multi-scale modeling approach
Journal of the Mechanics and Physics of Solids ( IF 5.3 ) Pub Date : 2021-01-06 , DOI: 10.1016/j.jmps.2021.104290
M. Shafayet Zamil , Duane P. Harland , Brian K. Fisher , Michael G. Davis , James R. Schwartz , Anja Geitmann

In an actively growing scalp hair, the cells proliferating at the basal zone of the hair follicle commence a journey of approximately 4 mm in two weeks before emerging from the scalp surface as a strong rigid fiber. This maturation process of the nascent hair fiber involves many biological, biochemical and biomechanical factors. While we have a rich understanding of the regulatory elements governing biological and biochemical processes, our understanding of the role of biomechanical factors in hair fiber protrusion is virtually null. By adopting a multiscale mechanical modeling approach, here we sought to add a new dimension to the understanding of hair fiber growth. An overall mechanical model constructed to correspond to the entire follicle is complemented and informed by predictions obtained from tissue and cell-scale models. Combined, the simulations suggest that biomechanical features such as follicle geometry, hydrostatic state of tissues layers, material stiffness, keratinization mediated hardening, and desmosome-correlated shear sliding behaviors are likely to play important roles in hair fiber protrusion. The simulation results predict fine tuning of biomechanical parameters to be a key strategy to ensure smooth hair fiber protrusion while maintaining sufficient anchoring strength against external disturbance. The in silico model of a hair follicle sets a framework for experimental validation and guides the investigation of biomechanical underpinnings of hair growth processes.



中文翻译:

毛纤维生长的生物力学:多尺度建模方法

在活跃生长的头皮头发中,在毛囊根部区域增殖的细胞在两周内开始约4毫米的行程,然后从头皮表面脱出为坚硬的硬质纤维。新生头发纤维的这种成熟过程涉及许多生物学,生化和生物力学因素。虽然我们对控制生物和生化过程的调控元素有丰富的了解,但我们对生物力学因素在头发纤维突出中的作用的了解实际上是无效的。通过采用多尺度机械建模方法,我们试图在此基础上增加对头发纤维生长的理解。从组织和细胞尺度模型获得的预测补充并告知了构建为对应于整个卵泡的整体力学模型。结合起来 模拟表明,生物力学特征(例如毛囊几何形状,组织层的静水状态,材料刚度,角化作用介导的硬化以及与桥粒相关的剪切滑动行为)可能在头发纤维突出中起重要作用。仿真结果预测生物力学参数的微调是确保头发纤维顺滑同时保持足够的锚固强度以抵抗外部干扰的关键策略。的 仿真结果预测生物力学参数的微调是确保头发纤维顺滑同时保持足够的锚固强度以抵抗外部干扰的关键策略。的 仿真结果预测生物力学参数的微调是确保头发纤维顺滑同时保持足够的锚固强度以抵抗外部干扰的关键策略。的毛囊的硅胶模型建立了实验验证的框架,并指导了毛发生长过程的生物力学基础研究。

更新日期:2021-01-06
down
wechat
bug